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Abstract

This work presents a software framework for satellite image data fusion algorithms and de-
scribes its goals and usage. Additionally to already existing algorithms, one new dictionary
learning algorithm is extensively described, implemented and tested in the framework.
The imagefusion framework presented here serves as lightweight basis for the implemen-

tation of image fusion algorithms. It is designed to be simple and effective, extensible and
efficient. The usage of C++11 allows to have a modern design combined with high compu-
tational performance and great availability and interoperability of third-party libraries for
different purposes. The framework makes use of object orientated and generic programming
in situations in which it is reasonable. The core of the framework is formed by the library
libimagefusion. It contains the whole functionality that an implementation of an image
fusion algorithms requires. The library is accompanied by the included parallelized image
fusion algorithms – currently three – and utilities. The utilities are handy for common
tasks like preparing images for input into an algorithm or comparing an output image with
a reference image to optimize the algorithm further. There are also utilities to fuse images
with the included algorithms. This makes it easy for users to try out an algorithm from
the framework and compare it with other external algorithms. In general the entry thresh-
old is kept low, so new users can quickly start to work and contribute or to develop new
algorithms. A detailed API documentation helps new users and serves experienced users as
reference.

The second part discusses, implements and extends a dictionary learning algorithm,
named “SParse-representation-based SpatioTemporal reflectance Fusion Model” (SPSTFM).
SPSTFM is a complex image fusion algorithm based on overcomplete dictionaries and sparse
coding. The implementation in this frameworks provides lots of options to adapt the algo-
rithm to the users needs and is equipped with good default options. Many of these options
arose from ambiguities in the algorithm or because there was room for improvement to
make optional extensions. A large part of this work tests different combinations of options
to find the best default options and show their behaviour. Finally some real images allow
for a comparison of SPSTFM with the other included algorithms.
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1 Introduction

Image fusion is a very interesting technique to combine multiple images with the intent to
increase the image quality or frequency. Satellite images of fine resolution from the Landsat
satellite are roughly available every two weeks. By combining these with daily coarse
resolution images image fusion allows to have daily fine-resolution images. This enables
applications that would not be possible without image fusion. Especially crop monitoring
and optimization relies on fine-resolution images with an almost daily frequency. However,
the focus of this work is the image fusion itself rather than models that require image fusion.
Chapter 2 gives a more detailed explanation about image fusion and also gives a general
overview of related topics.

Using image fusion is quite hard because of practical problems. Firstly, satellite images
are required. This is not a big problem, because these are freely available, though it is not
trivial to find the right ones and to handle the formats. One real problem is that there is
currently no free image fusion framework available. For some algorithms there are single
reference implementations available, but these rely on special image formats or require
a non-free (expensive) program to run, which also depend on the platform. For other
algorithms there is not even a reference implementation available. These circumstances
make it very hard to compare different algorithms with each other. But comparison is
important to decide which algorithm is the best for one specific application. There are
differences in quality, but also in computation time.
This work presents a free framework for image fusion algorithms. It is easily extensible,

tries to be efficient and can serve as a basis to do research for new or modified algorithms.
It is also easy to try out an included algorithm on an image set. In Chapter 3 the framework
is extensively discussed. In addition the code is freely available with a detailed doxygen
documentation. Chapter 4 goes into details about the main component: libimagefusion.
This is the heart of the framework and certainly its most important component. It con-
tains the core classes to implement image fusion algorithms. These perform input / output
handling, image management and provide a common interface for image fusion algorithms.
Currently, three algorithms are already implemented: STARFM, ESTARFM and SP-

STFM. The latter algorithm is also part of this work. It is a learning-based algorithm,
which trains a double-dictionary, similarly as in super resolution applications. For SPSTFM
there was no reference implementation available and it also requires sub-algorithms for im-
plementation. The background, including equations, algorithms and options, is discussed
in Chapter 5. There are also experiments included, which compare different options. The
tests show also the typical performance of SPSTFM itself and in comparison to STARFM
and ESTARFM.
Finally Chapter 6 draws a conclusion and gives an overview about further work. As often

with software a lot of improvements are possible and thus it never seems to be finished.
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2 Image Fusion Basics

This chapter gives an overview about the basic principles of topics related to image fusion.
First, the purpose of data fusion in general is roughly described. Then, Section 2.2 describes
how images can be represented in a computer. In Section 2.3 follow some properties of
satellite images and how they can be structured for different image fusion algorithms. The
algorithms that are mentioned in this work are also categorized briefly in the end.

2.1 Data Fusion

This work is about image fusion. Image fusion is an area in the discipline of data fusion.
Data fusion describes the process of combining multiple data sources to form an artificial
data source with increased accuracy. Often the data sources are sensors. Examples include
voltmeter, distance sensors or image sensors. Sensor measurements have always parasitic
errors, but can also have a bad resolution in time or quantity. Sometimes there might be
no value at all for some samples. In the here considered application – satellite images – this
could happen because of clouds. With sensor data fusion multiple sensors can be combined
with an appropriate model to form a superior sensor. In this work only very general methods
are considered, where no underlying physical model is applied, but a mathematical. Actually
an algorithm itself can be considered as a model.

2.2 Digital Images

Image fusion is data fusion with image sensors, i. e. digital cameras. So the data to fuse are
rasterized images. Rasterized images consist of a raster of pixels. The pixels are indexed by
(x, y)-coordinates, where the top left pixel is at (0, 0). Pixels have in general a rectangular
shape and often the shape is quadratic. This work only considers quadratic pixels.
Pixels hold scalar or vector values. Vector values mean that a each pixel contains multiple

values from different frequency ranges or bands, often colours. A vector-valued image can
be split into multiple scalar-valued images. These are called channels. Ordinary colour
images can be represented with three channels; one for red, one for green and one for blue.
This is also called RGB image. Generally, such images are called multi-channel images and
the ones with scalar values single-channel images.

For technically the values are limited in range or precision. Because of efficiency the
values are often integer numbers. Consumer applications and standards use mainly 8-bit
unsigned values, i. e. {0, . . . , 255}. The satellite images considered in this work use 16-bit
signed or unsigned type, but do not use the full available range.
A pixel value often represents the brightness of the corresponding band in the pixel area.

So for a single-channel image that represents a grey scale image, pixels with a high value
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Figure 2.1: Gray scale images with given brightness values in different data types.

y = 0

y = 1

y = 2

0 1 2 3 4x =

(a) A three channel rasterized image, where the
three channels are interpreted as red chan-
nel, green channel and blue channel.

RGB RGB RGB RGB RGBy = 0

RGB RGB RGB RGB RGBy = 1

RGB RGB RGB RGB RGBy = 2

x = 0 x = 1 x = 2 x = 3 x = 4

(b) Memory layout of an RGB image. From
inside out: iterate first channels, then x,
then y.

represent bright areas and pixels with a low value represent dark areas. Nevertheless, the
value range depends on the data type used for representation. Figure 2.1 shows two example
images, where similar brightnesses are given in different data types. While an 8-bit unsigned
type like in Figure 2.1a requires 1 byte per pixel, a floating point image like in Figure 2.1b
usually requires 4 bytes per pixel or for double precision 8 bytes per pixel. In addition
computation with floating point types might require more time. Another possibility would
be a fixed point type, which is basically an integer with a fixed divisor. However, this is
more interesting for readability than for computation.
For RGB images each pixel has three elements and gives the brightness for each colour

band. The channels are then blended to give the colour the pixel represents. This is
illustrated in Figure 2.2a as three layers, which all have half brightness and thus add up
to grey. With full brightness they would add up to white, with no brightness to black and
with different brightness values in the channels they would become (non-grey) coloured.
E. g. red and green without blue gives yellow etc., as can also be seen on the border of the
figure.
To save a multi-channel image in a computer’s memory, the order of the indices (x, y and

channel) has to be determined. There might be small timing differences, depending on how
the values are accesses but in general all orders are possible. Throughout this work a memory
layout like done in the OpenCV library [Its17a] is assumed: first channels are grouped, then
horizontal neighboring pixels and finally lines. This is clarified in Figure 2.2b. In reality
memory has no two dimensional shape. It only has one dimension, which is indexed by the
address. So the image is practically saved in one long line. The grey arrows in the figure
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Table 2.1: Typical structure of available images.
date 0 1 · · · 15 16

resolution

fine — · · · —
coarse · · ·

(a) Structure of images for STARFM.

date i j
resolution

fine
coarse

(b) Structure of images for ESTARFM or SPSTFM.

date i j k
resolution

fine
coarse

should indicate that.

2.3 Image Structure

All image fusion algorithms mentioned in this work, consider satellite images of two different
satellites; MODIS and Landsat. On the one hand their images differ in spatial resolution,
which means the pixel size (width or height) is different. For MODIS it can be 250−1000 m
and for Landsat 10−30 m. In this work 250 m in MODIS images and 30 m in Landsat images
are assumed. These will be referred to by coarse (also: low) and fine (also high) resolution.
On the other hand the temporal resolution is different. This means that the days between
flyovers (and capturing an image) is different. MODIS captures one image per day and
Landsat one per 16 days. Sometimes the time gap between Landsat images is less (e. g. 7
days), when the image region is overlapping.
So, when acquiring images over a 16 days period a typical situation of available images

is depicted in Table 2.1. So on dates 0 and 16 images of the same geographic area are
available in both resolutions. On the dates in between only the coarse resolution images
are available. However, some applications require a fine spatial resolution and a temporal
resolution of 1 day. For those the fine resolution images at dates 1− 15 are missing.
This is where image fusion comes into play. It aims to combine different images to generate

(also: fuse, predict) the missing images (also: products). Different image fusion algorithms
require a different set of input images. For example requires STARFM [GMSH06] three
input images, namely fine and coarse resolution at the same date i and coarse resolution at
date j to fuse a fine resolution image at date j. This is depicted in Table 2.2a, where i could
be e. g. 0 and j ∈ {1, . . . , 15}. This also allows to predict the fine resolution image for the
present day. Algorithms like ESTARFM [ZCG+10] or SPSTFM [HS12] require five input
images. They require fine and coarse resolution at the dates i and k and coarse resolution
at date j in between i and k to fuse a fine resolution image at date j. This is depicted in
Table 2.2b, where e. g. i could be 0, k could be 16 and j ∈ {1, . . . , 15}. These algorithms
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only allow to fuse a fine resolution image for a past day, since an image pair from a later
date k than the fusion date j is required.

The fused image is just a kind of extrapolation and thus only an approximation to a real
(non-existing) image. Though, to measure the quality (or the exact error) of a fused image,
a real image in fine resolution for the prediction date must be available. So for testing
purposes one could choose i = 0, j = 16 and k = 32. Then the fused fine resolution image
and the real fine resolution image can be compared to determine the error.
Image fusion algorithms can be categorized according to the way the algorithm works.

Here three categories are mentioned:

• Reconstruction-based algorithms, like STARFM and ESTARFM. These kind of al-
gorithms go through the fine resolution image and for each pixel they look at the
time difference of nearby similar pixels in the coarse resolution images to predict the
change of that pixel.

• Transformation-based algorithms, based e. g. on wavelet or tasseled cap transforma-
tions.

• Learning-based algorithms, like SPSTFM. These kind of algorithms try to learn or
train – a series of maybe incomplete optimizations – an entity. This entity, which is
in SPSTFM a dictionary-pair, is then used for the fusion.

This work will focus on the SPSTFM algorithm and use STARFM and ESTARFM only for
comparison of the quality.
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3 Image Fusion Framework

This chapter gives an overview about the imagefusion framework and describes some details.
The first section describes the goals of the framework. Then, Section 3.2 gives an overview
about the framework. It describes what is included in the framework and how it can be
used. Next, Section 3.3 explains the utilities that come along with the library and what
utilities are planned for the future.

3.1 Goals

There are several goals that led the design of the framework. One key goal is efficiency.
Image fusion algorithms are often computational expensive and thus efficiency is very im-
portant. At the time of planning this framework, different image fusion algorithms were only
available as reference implementations or as implementations in non-compiled languages.
These were either not easy to use or inefficient. So with efficiency being a key-goal for
the image fusion framework C++11 has been chosen as programming language of choice.
C++11 allows a modern design and at the same time being more efficient than the prede-
cessor C++03.
Another goal is generality. So the framework is suitable for different image fusion algo-

rithms and also easily extendable for not yet included algorithms. This allows scientists to
write new image fusion algorithms without requiring to compile the image fusion library.
Also parallelization is supported in a general way, which means that a new image fusion al-
gorithm can be parallelized, again without the requirement for a compilation of the library.
For some algorithms parallelization works out of the box.
The previous goals also contain parts of the following goal: effectivity. This means the

framework should make it easy for users to complete their tasks. To be effective on the one
hand the library has a good interface, which tries not to restrict the user. On the other
hand there are utilities to provide an easy way to fulfill common tasks or try out included
algorithms.
The last goal is connected to all previous goals: reusability. For this framework, besides

object oriented programming, reusability is also meant from a user’s perspective. So the
framework heavily relies on existing, efficient and effective libraries and tries to act as
common harmonized interface. This allows seamless interoperability between the libraries,
but without preventing the user from a direct access to these libraries.

3.2 Overview

The image fusion framework consists of several components. The core of the framework is
the image fusion library libimagefusion. It contains everything that is required to write
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algorithms

Figure 3.1: Overview of framework components

image fusion algorithms. libimagefusion is described in Chapter 4 in more detail.
As part of this thesis and another thesis [Kla16], some image fusion algorithms are already

implemented within the library. These are

• STARFM,

• ESTARFM and

• SPSTFM.

The latter is part of this thesis and described extensively in Chapter 5. For each algorithm
there exists a command line utility to fuse images, see Section 3.3. However, the algorithms
can also be used in a program, e. g. to make a graphical user interface or a smartphone app.
The framework allows users to implement additional algorithms in exactly the same way
as the included ones. For this, the library has not to be recompiled, but only linked. This
allows a direct start and makes contributing algorithm implementations easier for users. All
the described components are depicted in Figure 3.1. With its simple but effective design
the framework should grow to a collection of image fusion algorithms.

One large component that is not shown in the overview, but present in every component, is
the documentation. The library comes with an extensive API documentation and tutorials
written as doxygen comments [vH16]. Documentation is considered as very important for
the success of this framework. The utilities come with a usage documentation, which is
generally accessible with the option --help.

All of that comes along with this work as a git repository. This makes it easy for users
to contribute. The repository also contains a readme-file, which contains the dependent
libraries and has instructions of how to compile the framework and documentation. As
build manager CMake is used. It can even generate Linux packages and Windows installers.
In general the code base should have low threshold for new users. The readme is therefore
written in kind of tutorial style.

3.3 Utilities
The utilities are a collection of command line tools. Their purpose is to fulfill common
tasks, such as using an image fusion algorithm, preparing images for that or comparing
results. All utilities have a common style for their option interface, which is described in
Section 4.3. This includes that all options that are possible on command line, can be put
into a file and this can be used with --option-file=<file>.
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For each of the included implementations of STARFM, ESTARFM and SPSTFM a utility
will be provided to fuse images with it. These utilities are not described here, since they
are very similar in usage, but have different algorithm specific options. The --help options
describe all possible options. Listing 4.1 gives an example how to specify date and resolution
tag for an image.
Instead two other utilities are described in more detail. Image geo crop is presented in

the next section and image compare in Section 3.3.2. What they have in common is that
both require images as inputs. These can be specified by their filename, e. g. for image geo
crop:
$ imggeocrop landsat1.tif modis1.tif
$ imggeocrop -i landsat1.tif -i modis1.tif
$ imggeocrop --img=landsat1.tif --img=modis1.tif

Instead of just giving the plain file names of the images as arguments, one can also use the
-i <file> or --img=<file> option, as can be seen above. It is also possible to use just a
single channel from a multi-channel image as input or to mix them up. This can be done
with nested options or sub-options. Nesting can be done with ’...’, "..." or (not as first
level on bash) (...) (see also Section 4.3). To read in for example only channels 0 and 2,
one can specified these with the nested option -l <num-list> or --layers=<num-list>. But
then also the -f <file> or --file=<file> option has to be used to specify the file name:
$ imgcompare --img=’-f landsat1.tif -l (0 2)’ --img=’-f modis1.tif �

-l (0 2)’
$ imgcompare --img=’--file=landsat1.tif --layers =(0 2)’ �

--img=’--file=modis1.tif --layers =(0 2)’

It would also be possible two use twice the same channel, e. g. -l (0 0), which would also
work with a single-channel image. Now, if only a part of an image should be used, that
can be specified as well. For this the -c <rectangle> or --crop=<rectangle> sub-option
accepts -x <num>, -y <num>, -w <num> (or --width=<num>) and -h <num> (or --height=<num>)
sub-sub-options. These are always in pixel coordinates. For example
$ imggeocrop --img=’--file=img1.tif --crop=(-x 20 -y 20 -w 400 -h �

400)’ --img=img2.tif

Would use only the 400 × 400 image region, starting at (20, 20) for img1.tif. Note, all of
these options work (currently) for all utilities.

3.3.1 Image geo crop
Image geo crop (imggeocrop) is a utility to crop images to the same geographical extends
and scale the resolution appropriately. So for example using
$ imggeocrop landsat1.tif modis1.tif

will rescale the coarse resolution image (independent from the order of the input images)
to the fine resolution with bilinear interpolation. Furthermore it computes the the common
geographical region of both images. The images are then cropped – if appropriate. Cropping
is done with subpixel accuracy, again with bilinear interpolation. The cropped image(s) are
output with a new file name. By default a prefix cropped_ will be used. The naming scheme
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can be changed with the options --prefix=<file-prefix> and --postfix=<file-postfix>.
Afterwards the images will have exactly the same geographical extents and also the same
image size. Note that images that do not need to be cropped will not be copied.
Nevertheless there are some requirements for the images. The images must have the same

geographical coordinate system. The utility is not yet able to reproject the coordinate
system. Though this is a planned feature. So currently the example above requires a
reprojection with an external tool, since coordinate systems are different for Landsat and
MODIS images. GDAL [GDA16] provides utilities to reproject images. The images must
also have a valid coordinate system at all. This requirement might be relaxed, too, in a
future release.

3.3.2 Image compare

Image compare (imgcompare) is a utility mainly to measure the quality of fused images, but
it can also extract properties or make plots. Usually it compares two single-channel images
by various error means (mean absolute difference, root square mean error, etc.):

$ imgcompare img1.tif img2.tif

It is also possible to use a single input image:

$ imgcompare img1.tif

However, not all options make sense with a single image and thus are not possible.
Generally, when using two input images, they should have the same size. If they differ in

size, image compare uses a correlation to find the best match of the images and crops the
larger image at the found location to the size of the small image. It also prints the found
crop window as information to the user. However, this is only a guess and it might take a
lot of time. If the user knows the exact crop location, he/she can specify it with sub-option
--crop, as described in Section 3.3. Cropping both images is of course possible to compare
only a specified region. The same holds when using a single input image.
For comparing images and see local differences, image compare can output three kinds

of absolute difference images:

• A plain difference image ID = |A−B| with the same data date as the source images.
This is useful for further analysis, since the result is left unchanged, but hence maybe
inappropriate for visual inspection. The option for this is --diff=<out-file>. An
example is shown in Figure 3.2a.

• A scaled difference image with maximized contrast. This is IS = ID−min ID
max ID−min ID

·m,
where m is the maximum of the image data range. For integer data types m is the
greatest possible value (e. g. m = 255 for 8 bit unsigned integers) and for floating
point data types is m = 1. The data type is the same as the data type of the source
images. This kind of difference image can be used to easily visualize the local quality
of the image though it actually does not contain more information than the non-scaled
version. The option for this is --diff-scaled=<out-file>. An example is shown in
Figure 3.2b, which is just Figure 3.2a with maximized contrast.
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(a) Plain absolute difference
image.

(b) Absolute difference im-
age scaled for maximum
contrast.

(c) Binary difference image.

Figure 3.2: Examples for several kinds of difference images.

Figure 3.3: Scatter plot with quite low deviations.

• A binary difference image. It will output an 8 bit unsigned integer image IB with

IB(x, y) =
{

255 if ID(x, y) 6= 0
0 if ID(x, y) = 0

(3.1)

for all (x, y). This is useful to see directly where differences are and where not. The
option for this is --diff-bin=<out-file>. An example is shown in Figure 3.2c.

In addition to the difference images, image compare can also output a scatter plot with
the option --out-scatter=<out-file>. A scatter plot visualizes the relation between input
images A and B, i. e. A × B for all coordinates. So the values of A are on the horizontal
axis and the values of B of the respective same locations on the vertical axis. To make it
more clear, let a := A(x, y) and b := B(x, y). Then the scatter plot will set a marker at
(a, b). This implies that if the images are the same, the scatter plot will only have markers
in the diagonal. The further away the markers are from the diagonal the more different are
the images. One example plot is shown in Figure 3.3. In this figure it is easy to see that the
images are very similar, since all scatter dots are near the diagonal. Obviously this makes
only sense for two input images.
Also very helpful for a single input image is a histogram plot. A histogram maps a set of

intervals (called bins) to the number of pixels having a value in the corresponding intervals.
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Figure 3.4: Histogram of Figure 5.2a, plotted with the image compare utility.

With a histogram plot it is easy to see how the values in an image are distributed. Image
compare has four options to plot histograms:

• --out-hist-first=<out-file> will plot the histogram of the first input file. This
options works also if there is only a single input image.

• --out-hist-second=<out-file> will plot the histogram of the second input file.

• --out-hist-both=<out-file> will plot the histograms of both input files into one plot.

• --out-hist-diff=<out-file> will plot the histogram of the plain difference image.
When comparing two images, this allows to visualize the error distribution.

Note, all of the above <out-file> parameters can be image file names (e. g. hist.png) or
CSV (character separated value) file names with the extension .csv or .txt (e. g. hist.csv).
The latter is interesting if the plot should be done with an external tool, which is used for
the histogram plots in Section 5.6. To show the image output at least once, Figure 3.4 is
the histogram plot of Figure 5.2a.

There are also some options to modify the output of the plots. The number of histogram
bins can be changed with --hist-bins=<num>. By default this is set to 32. A logarithmic
scale for the histogram count is available with --hist-log. By default a linear scale is used.
When using an image output file the size can be changed with --hist-size=<size>, e. g.
--hist-size=500x1000. This specifies the histogram plot size in pixel (without axis and
ticks etc.).
Apart from that it is also possible to switch on grids with -g or --enable-grids and

legends with -l or --enable-legends. These options apply to the scatter plot as well as to
the histogram plot.
Sometimes an image contains invalid values. For satellite images there might be clouds

or there can be a border without image content (from image rotation). To restrict the
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comparing only to the valid values, image compare allows to specify masks. The most
simple form is to use a mask file, which is an 8-bit unsigned single-channel image. Such a
file can be given with the option -m <img> or --mask-img=<img>. Also multiple mask files
can be specified to restrict the valid locations further. Then image compare considers only
locations where all masks are valid. This might be useful if both images come with a mask,
like:
$ imgcompare img1.tif img2.tif -m mask1.tif -m mask2.tif

If no mask image is available, there is another way to specify a mask. Often invalid pixels
are marked with special values, like −9999. These or any other known invalid values can
be excluded with the option --mask-invalid-ranges=<range-list>. This will create a mask
on-the-fly. For example to exclude all negative values, the user can specify:
$ imgcompare img1.tif img2.tif --mask -invalid -ranges=(-infinity ,0)

However, the same can be achieved by specifying only the non-negative numbers as valid
range with --mask-valid-ranges=<range-list>:
$ imgcompare img1.tif img2.tif --mask -valid -ranges =[0, infinity)

In this example a square bracket has been used for the lower bound to include it in the range.
So [a, b] is the range from a to b including a and b and (a, b) excluding a and b. Multiple
ranges can be specified and both options can be combined. So to allow all non-negative
numbers, except 42 and everything greater than 23456, the following can be used:
$ imgcompare img1.tif img2.tif --mask -valid -ranges =[0,inf) �

--mask -invalid -ranges=’[42 ,42] (23456 , inf)’

If additionally one or more mask files are used, the invalid and valid (!) ranges only restrict
it further. So using -m mask.tif --mask-valid-ranges=(-inf,inf) will have the same effect
as only using the mask file.
Image compare always shows some statistics, like mean error and standard deviation,

minimum error and maximum error. For a single input file the mean and standard deviation
are also shown, but there is no error measure. However, the minimum and maximum values
are shown, which can also be of interest.
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4 libimagefusion
This chapter describes the core library of this framework libimagefusion and gives an
overview of its most important classes. The library tries to keep things simple, but powerful.
To be efficient and effective, it is written in C++11. Being a compiled language C++
allows fast execution times. It is also a widely used language so there is a large choice
of available (external) libraries. Section 4.1 will explain the design and give rationales
for fundamentals. It presents the core classes that are essential for every image fusion
algorithm. Then, in Section 4.2, a brief introduction about how geo information can be
used with libimagefusion. Finally, the build-in support for option parsing as required in
every utility is presented in Section 4.3.

4.1 Image Fusion
This section describes some significant core classes, which are required to write an image
fusion algorithm. They are depicted with their relationships in Figure 4.1. Before going
into details, a short overview explains the purpose about each core class:

Image represents an image. It can be used for image processing (also with OpenCV) and
reading and writing image files.

MultiResImages is used as structured image storage. It holds all the input images that an
image fusion algorithm requires. The images are marked by date and resolution tag.

DataFusor is the base class for all image fusion algorithm implementations. This provides
a common interface to set up and run an algorithm.

Options is the base class for all algorithm option classes. It serves as interface for DataFusor
and also holds the prediction area option.

Parallelizer can be used as a meta data fusor to run a DataFusor in parallel. For that it
runs multiple instances of an underlying DataFusor to fuse separate parts of an Image.

Next, the classes are discussed in more detail.

MultiResImages

Image

DataFusor

Parallelizer

Options

*

source images

output
buffer *underlying

Figure 4.1: Important classes in libimagefusion and their relation.
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4.1.1 Image
The Image class represents images. It should be easy to use, but still not restrict the user.
Besides a copy and a move constructor, it has constructors to make empty images (default
constructor), images with specified size and type and for images read from a file:
Image nothing;
Image graystripe {1000 , 20, Type:: uint8x1 };
Image img{"image.tif"};

So Image is not a generic type. An Image object can hold an image of an arbitrary type,
because it uses a dynamic type system inherited from OpenCV. This has the advantage of
being able to read an image file with an unknown type (unknown at compile time). The
type can be requested at runtime with basetype() and channels() or type(). channels()
returns the number of channels, so for an RGB image the number of channels is 3 and for a
grey scale image it is 1. basetype() returns the base data type independent of the number of
channels, like e. g. Type::uint8 for an 8-bit unsigned integer image, which can contain values
from 0 to 255, Type::int16 for a 16-bit signed integer image, which can contain values from
−32768 to 32767 or Type::float32 for a floating point image with single precision. Mask
images are also supported and have always the base type Type::uint8. type() returns a full
type, which not only contains the base type, but also the number of channels. One example
would be Type::uint8x3 for an 8-bit unsigned integer image with 3 channels. Although type
information is not required explicitly when reading in an image file, it is still required at
compile time when accessing the pixel values of an image. So to get or set for example the
pixel value at x = 10 and y = 15 in channel 1 (first channel is 0) of an 8-bit unsigned integer
image img.at<uint8_t>(10, 15, 1) can be used. Here it is assumed that img has got an 8-bit
unsigned integer type, has at least a size of 11× 16 and at least two channels. A program
must assure that this is the case. There are no internal checks of this for performance
reasons. For masks mask.getBoolAt(10, 15, 1) or mask.setBoolAt(10, 15, 1, true) can
be used, where the latter sets the pixel value to 255.

So in principle, it is not easy to access a pixel of an image, whose type is unknown
at compile time, e. g. like img above. To simplify that the library provides a mechanism
to call a functor with the correct compile time type information. This can be accessed
via CallBaseTypeFunctor::run(Functor{img}, img.basetype()). There is also a type traits
class, called DataType to get the C++ data type corresponding to the Type. Just to give an
example functor that returns as double the pixel value at x = 10 and y = 15 in channel 1
of an image with arbitrary base type (but appropriate size and number of channels):

1 struct Functor {
2 // reference on image , initialized at construction
3 Image& img;
4

5 // t is the real image base type
6 template <Type t>
7 double operator ()() const {
8 // get corresponding C++ data type
9 using basetype = typename DataType <t>:: base_type;

10

11 // retrieve pixel value at x = 10, y = 15, c = 1
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12 basetype value = img.at<basetype >(10, 15, 1);
13

14 // return pixel value in double type
15 return static_cast <double >( value);
16 }
17 }

Note, this example seems to be rather long for this simple task, but almost the same code
can be used for much more complicated tasks. So this is quite all that has to be done
to retrieve values from images with a base type, that are unknown at compile time. For
details on this mechanism and more advanced usage patterns, as how to use it with a
specified set of allowed types (to give good error messages), the reader is referred to the
API documentation.

Internally, the Image class uses OpenCV’s Mat [Its17b] for most of the functionality, in-
cluding the dynamic type system. OpenCV is also responsible for the memory management,
which does not only consist of allocating and deallocating memory, but also reference count-
ing. So OpenCV allows to make shared copies of images, which share the image memory.
This means that changing a pixel is reflected in all shared copies. Using the same memory
means also that making a shared copy is a very cheap operation. Still the view on the im-
age can be different across shared copies. So it is possible to make a cropped shared copy.
This can be accessed by using Image small = img.sharedCopy(r);, where r is a Rectangle
to specify the top left corner and size of the crop window. Note that in OpenCV a shared
copy is made by the usual copy constructor and copy assignment, which is a very unusual
behaviour in C++. This design flaw undermines const-correctness in the sense that a const
Mat can be modified via a shared copy. This has mostly been fixed in Image. It will make
a deep copy (also: clone) when copying it, which means that the new image will have its
own memory and hence be independent from the original. Image has an interface designed
in the spirit of C++11 and thus implements also move constructor and assignment, which
is also helpful for efficiency.
The Image class even goes beyond plain const-correctness by returning a ConstImage object

in specific situations (analogue to the const_iterator concept). A ConstImage object only
allows read access on its pixels. This makes it suitable for input images.
The most operations are defined in appropriate methods and can be used in a Java style,

like

Image sum = img1.add(img2);

In case this would result in an overflow the result is limited to the data range. So if both
images would be for example 8-bit unsigned integer and both had somewhere value 150 the
resulting value would be 255. If saturation is not desired, the data type of the result can
be changed like:

Image sum = img1.add(img2 , Type:: uint16x3);

Many often required operations are defined like this. Though, more specific operations
available in OpenCV, might not be directly available in Image. However, to not restrict
the user, the underlying OpenCV Mat can be accessed with cvMat(). With this function,
everything from OpenCV is available in libimagefusion. Remark: This again opens the
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possibility to modify a ConstImage, but only if the user really wants to do that on purpose,
similarly as with a const_cast. Const-correctness does not easily break by accident here.
For one thing OpenCV is not used in Image and this reading and writing images from and

to files, respectively. The library that handles this is GDAL [GDA16]. GDAL provides good
image format drivers, especially for TIFF. Also, it can read specific parts or channels of
images. Image provides a constructor to read only a rectangular part of an image, specified
channels or to read it flipped.

4.1.2 Source Image Container
The MultiResImages class is used to store the source images for every image fusion algorithm.
In image fusion algorithms the source images are required in a specific structure. This can
be thought of a table with the date against the resolution, like illustrated in Table 2.1. So
typically there are one or more fine resolution images at specific dates and coarse resolution
images available on every considered date. MultiResImages is such a structured storage
for these images. Note that DataFusor takes a shared pointer on MultiResImages. So the
DataFusor can be the owner, but is not required to. This protects e. g. a MultiResImages
object from destruction in a situation where a function creates a MultiResImages and a
DataFusor object and returns only the DataFusor object. A small example illustrates this,
where SomeFusor is an image fusion algorithm implementation and SomeOptions the corre-
sponding options class:

1 SomeFusor getFusor () {
2 std:: string fine_tag = "fine";
3 std:: string coarse_tag = "coarse";
4

5 auto imgs = std:: make_shared <MultiResImages >();
6 imgs ->set(Image("coarse1.png"), 1, coarse_tag);
7 imgs ->set(Image("coarse2.png"), 2, coarse_tag);
8 imgs ->set(Image("coarse3.png"), 3, coarse_tag);
9 imgs ->set(Image("fine1.png"), 1, fine_tag);

10 imgs ->set(Image("fine3.png"), 3, fine_tag);
11

12 SomeOptions o;
13 o.setCoarseTag(coarse_tag);
14 o.setFineTag(fine_tag);
15 o.setDate1 (1);
16 o.setDate3 (3);
17

18 SomeFusor f;
19 f.setSrcImages(imgs);
20 f.processOptions(o);
21 return f;
22 }

Although imgs gets destroyed at the end of getFusor(), this is not harmful, since it is only
one pointer on the underlying MultiResImages object. Another pointer is saved in f, which
is why the underlying object does not die with imgs.
Retrieving an image from a MultiResImages object is quite easy:
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Parallelizer’s prediction area

prediction area of underlying DataFusor 1

prediction area of underlying DataFusor 2

prediction area of underlying DataFusor 3

source image

Figure 4.2: Stripes that are predicted in parallel by the three underlying data fusors of
Parallelizer.

1 ConstImage const& fine1 = imgs ->get("fine", 1);

This returns a const reference on an Image and it is assigned to a const reference on a
ConstImage to make it more clear that it can be read only.

4.1.3 Fusion Algorithms

Then, there is also a base class for all image fusion algorithms, called DataFusor. Basically,
it receives a MultiResImages object (shared pointer) containing the source images and an
Options object, as shown in the example of the previous section. The fusion can be started
easily. After fusion the fused Image can be retrieved and for example written to a file.

1 f.predict (2);
2 ConstImage const& out = f.getOutputImage ();
3 out.write("fine2_pred.png");

The base class for options (Options) has a prediction area options. This specifies a rectan-
gle in pixel coordinates, where the prediction should be made. It is set by o.setPredictionArea(r),
where r is a Rectangle. It often makes sense to restrict the fusion to an inner region, since
many fusion algorithms require a window or similar around the fused pixels. So, using a
larger image as actually desired and restricting the prediction area might help to keep the
quality homogeneous, also near the prediction border.
Next, to accelerate there is a Parallelizer class, which is a special kind of (meta) data

fusor. It will internally use multiple instances of a DataFusor class to fuse an image in
parallel. For that the output image is cropped into horizontal stripes and each fusor in-
stance is restricted with the prediction area to predict that specific stripe. This is depicted
in Figure 4.2. Rather simple image fusion algorithms from the class of reconstruction
based algorithms usually work out of the box with Parallelizer. Here is an example with
STARFM:
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1 StarfmOptions opt;
2 ... // (set options as usual)
3

4 ParallelizerOptions <StarfmOptions > p_opt;
5 p_opt.setPredictionArea(opt.getPredictionArea ());
6 p_opt.setAlgOptions(opt);
7

8 Parallelizer <StarfmFusor > p;
9 p.setSrcImages(imgs);

10 p.processOptions(p_opt);
11 p.predict (2);

So, just the ParallelizerOptions are extra and the StarfmFusor object is replaced by a
Parallelizer<StarfmFusor>.
However, not every algorithm is as easily parallelizable as STARFM. SPSTFM for exam-

ple is parallelized in the implementation by the internally used matrix library and would
otherwise be more difficult to parallelize. This is because for the learning process infor-
mation from the whole image is required. Hence, with the internal parallelization, for an
SpstfmFusor the Parallelizer class cannot be used (and trying that gives a descriptive
error message). Generally an algorithm could provide a specialization of Parallelizer for
a specific data fusor class to provide a custom parallelized implementation. The SPSTFM
implementation is always parallelized, though.

4.2 Geo Information
Rather unrelated to the is the GeoInfo class. It can read geo and meta information from
images and has methods to modify these information. To add these information to an image,
the image has to exist as file already, which is then just updated with the information. This
allows very flexible handling of geo and meta information without the requirement to read
or write a whole image. An example illustrates this:

1 // get prediction area from the fusor options
2 Rectangle r = opt.getPredictionArea ();
3

4 // read in geo info from fine1.png
5 GeoInfo gi{"fine1.png"};
6

7 // shift top left corner and change size
8 gi.geotransformTranslateImage(r.x, r.y);
9 gi.setSize(r.size());

10

11 // write geo info to predicted image fine2_pred.png
12 gi.addTo("fine2_pred.png");

4.3 Utility Support
To support the existing command line utilities and also the production of new utilities, the
imagefusion framework has got a command line option parser. Option parsing is a task

19



that every command line utility has to do and thus every utility profits from this. Also, for
the utilities of a framework, it is beneficial if they behave in a consistent style. Thus using
the same option parser for all utilities not only saves work and code, it improves also the
user experience and makes the code easier maintainable.

The requirements for an option parser in imagefusion are as follows. It should. . .

• . . . use a common syntax for command line options.

• . . . be easy to use.

• . . . only require a small amount of code in the utility.

• . . . support a pretty printed yet easy to make help.

• . . . be extensible by a utility to parse custom data types.

• . . . integrate into the framework.

• . . . not limit a utility in the sense that it cannot handle complex options.

• . . . be able to handle files with options.

• . . . give good error messages to the user in case of a bad input.

• . . . be able to parse various data types, including the ones from libimagefusion (like
Rectangle).

For the first six points the Lean Mean C++ Option Parser [Ben12] seemed to suffice.
Especially, since it is a single-file header-only library it is easy to integrate. It uses a
commonly known syntax; double dash long options, e. g. --long-opt and single dash short
options, which can be grouped, e. g. -abc to use options a, b and c. They can also take an
argument (configured in the utility code), either separated, like -o arg and --long-opt �

arg, or for long options with an equal sign, like --long-opt=arg. The Lean Mean C++
Option Parser is also easy to use and requires only a small amount of code to specify the
options and the help text. The help text can be written in a tabular form and be printed
with alignment also for broken lines. However, this was originally only supported for the
last column and has been extended in imagefusion for arbitrary columns to support sub-
tables without regressing the original behaviour. The option parser can also be extended
by someone who makes a utility to parse and check for custom data types.
Non the less the remaining requirements were originally not existing in the way the

imagefusion framework required it. So, to allow arbitrary nested options, a tokenizer has
been added. It allows for an option argument to be an option string again, which separates
tokens by spaces, but respects quotings with double quotes "...", single quotes ’...’ and
parentheses (...). The latter does not work as first nesting level on bash, but in option
files (see below). For example a user might be required to give an image as argument for
a utility. In image fusion often a date and a resolution has to be specified. The extended
option parser allows just that. An image option can have the format

Listing 4.1: Image argument with date and resolution tag.
--image=’--file=landsat -file -name.tif --date =42 --tag=fine’
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So the argument of image consists itself of options. Also their arguments could again consist
of options and so on. So very complex options are possible, but more important not required.
This makes it still easy to use, but does not limit the options for complex situations.

There is also a build-in pseudo option --option-file, which accepts a file as argument.
This is by default enabled, which on the one hand means that a utility does not have to
write any code for this and on the other that it can be disabled, if a utility does not want to
support this. An option file can contain any valid option just as on command line. This is
by design, because the file content is tokenized and these tokens replace the --option-file
option before the actual option parsing begins. Line comments beginning with a hash #
are also supported. This allows to write well documented option files. All whitespace is
handled the same, including newlines. This allows to structure the option file to make it
more readable.
Especially because complex options are possible, good error messages are important in

case of typos and faulty user inputs. This is done via exceptions and a utility is not required
to catch them, because the messages are printed by default. However, it can decide to handle
them. The error messages tell precisely which argument was considered to be wrong for
which option and in case of nested options they tell recursively the options where it is
located. This works also for all imagefusion data types like Rectangle. When the argument
is checked for correctness, it is tried to be parsed with the corresponding parsing function.
These parsing functions can not only be used by the framework to check for correctness,
but also by the utility developer to gather the option arguments in the right type.
Generally, when parsing options with the option parser, the options are stored in two

ways:

• In the order the options were specified on command line.

• In a grouped fashion and each group contains options in the order the options of this
group were specified on command line.

Figure 4.3 presents an example for command line input and the two storages. The groups
are the usual way to handle options and often one is even only interested in the presence
or the last argument. However, the most interesting scenarios are easily implementable by
a utility:

• Test for presence of an option / print the help:
1 if (! options[Opt::HELP]. empty()) {
2 printUsage(usage);
3 std::exit (0);
4 }

• Get the argument of the last option of a kind / parse an argument:
1 if (! options[Opt::NUM]. empty()) {
2 std:: string& arg = options[Opt::NUM].back().arg;
3 int n = Parse::Int(arg);
4 ...
5 }
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input: opt: n, arg: 1 opt: a opt: b opt: –size, arg: 5x4 opt: n, arg: 10 opt: b
0 1 2 3 4 5

groups: [A] opt: a
0

[B] opt: b opt: b
0 1

[NUM] opt: n, arg: 1 opt: n, arg: 10
0 1

[SIZE] opt: –size, arg: 5x4
0

Figure 4.3: Parsed option structures for example command line argument:
./utility -n 1 -ab –size=5x4 -n 10 -b.
The input object is just a vector and groups is a map of vectors with an enum
key.

• Evaluate an --enable-foo / --disable-foo pair where the last one used wins:
1 if (! options[Opt::FOO]. empty()) {
2 if(options[Opt::FOO].back().prop() == Props:: ENABLE)
3 ...
4 else // disable
5 ...
6 }

• Cumulative option (-v verbose, -vv more verbose, -vvv even more verbose):
1 int verbosity = options[Opt:: VERBOSE ].size();

• Iterate over all --file=<fname> arguments:
1 for (auto& opt : options[Opt::FILE]) {
2 std:: string& fname = opt.arg;
3 ...
4 }

• If required, the input storage can be used to process some or all arguments in the
order they were given on command line:

1 for (auto& opt : options.input) {
2 if (opt.spec() == Opt::NUM) {
3 int n = Parse::Int(opt.arg);
4 ...
5 }
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6 else if (opt.spec() == Opt::FILE) {
7 std:: string& fname = opt.arg;
8 ...
9 }

10 ...
11 }

All of these features make the option parser easy to use and save utility developers from
a lot of work. Yet it is still powerful to cope with complex arguments and custom data
types, while checking arguments and accepting option files without requiring utility code.
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5 Implementation of Dictionary-Learning
Algorithm SPSTFM

The “SParse-representation-based SpatioTemporal reflectance Fusion Model” (SPSTFM)
algorithm is mainly based on learning an overcomplete dictionary pair and using sparse
coding. The next sections explain the method in detail using a slightly different nomencla-
ture as [HS12]. Also there are a few optional additions to the method. Since the focus is
on the method itself, a simplified image structure compared to Table 2.2b is used without
loss of generality, which contains fixed dates as shown in Table 5.1.

5.1 Sampling patches
SPSTFM works with patches. A patch is a small square region of the image I. Neighbouring
patches can overlap. For processing a patch is not used as a small square image, but instead
in a lexicographically stacked vector form, which is called signal. The process of sampling
and stacking is depicted in Figure 5.1. We refer to it as patch signal pi ∈ Rn to make clear
that this vector is representing a

√
n ×
√
n patch. A set of patch signals can be used as

columns of a matrix P . Such a matrix is called patch matrix.
As can be seen in the image structure in Table 5.1, for date 1 and 3 there are two

corresponding images: fine and coarse resolution images. Optimally these do only differ in
resolution, but in practice they are maybe recorded at different times and with different
sensors, which have even different bands and bit depth. So, the images themselves of the
same date do not match exactly, but it is assumed that the image differences match better.
Therefore only the difference image patch matrices are used and denoted by Pji := Pj −Pi,
where Pj and Pi would be the patch matrices corresponding to date j and i, respectively.
Equivalently Pji can be sampled from the difference image Iji := Ij − Ii.

A patch matrix does not hold every patch signal from an image, rather a selection of
N typical or important patch signals. The patch signals can be selected in different ways.

Table 5.1: Structure of images for SPSTFM, where for dates 1 and 3 image pairs are given
and the fine resolution image for date 2 is to be predicted.

date 1 2 3
resolution

fine
If,1 If,2 If,3

coarse
Ic,1 Ic,2 Ic,3
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Image I p0 p3p1 p4p2 p5

Figure 5.1: Sampling of a tiny image I. Here the image on the left has 2× 3 patches. Each
has a size of 7× 7 pixels with 2 pixels overlap on each side, which are also the
values used in [HS12]. These patches are considered one-by-one (middle) and
lexicographically stacked (i. e. row-major) to form patch signals (right). The
stacking order is indicated by some arrows for the first patch (blue).

The most simple one is to choose them randomly. A more promising one is to select the N
patch signals with the most variance. This is the default option.
Now let Pf,31 and Pc,31 denote the n × N patch matrices for fine and coarse resolution,

respectively. So Pf,31 contains the patches [HS12] suggests to subtract mean µc and divide
by the variance σc of Pc,31 from both patch matrices for normalization:

P̂c,31 := (Pc,31 − 1n×N µc)
1
σc

and P̂f,31 := (Pf,31 − 1n×N µc)
1
σc
.

Then P̂c,31 and P̂f,31 would be the training data. For the sake of simplicity the training
data is denoted by Pf,31 and Pc,31 in the following sections.

There are other options possible than using the mean and variance of the coarse resolution
difference patch matrix. The general form is

P̂c,31 := (Pc,31 − 1n×N ac)
1
bc

and P̂f,31 := (Pf,31 − 1n×N af)
1
bf
. (5.1)

There is an option to choose ac and af :

• coarse resolution mean for both (as above): ac = af = µc

• fine resolution mean for both: ac = af = µf

• separate resolution means: ac = µc, af = µf

• no subtraction of any mean: ac = af = 0

Another independent option is provided analogously to choose bc and bf :

• coarse resolution factor for both: bc = bf = sc

• fine resolution factor for both: bc = bf = sf
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• separate resolution factors: bc = sc, bf = sf

• no division of any factor: bc = bf = 1

and s stands either for the variance or for the standard deviation (selectable with an op-
tion). Usually the standard deviation is used for normalization. In contrast to [HS12] this
implementation uses the difference image instead of the difference patch matrix for compu-
tation of mean, variance and standard deviation. This should give more accurate results,
since it contains more data.
The normalization operations have to be done for the coarse resolution patches at recon-

struction again and the inverse operations for the fine resolution patches. This is described
briefly in Section 5.4.
Note that this is about the normalization of differences. These are invariant to a mean

shift in the image, consider (Ij+µ)−(Ii+µ) = Ij−Ii. The mean used in (5.1) is the mean of
the difference. Hence, by default, no subtraction of any mean is performed. Dividing both
difference patch matrix by the same factor should not have an effect. Using separate factors
could be valuable for images that have different deviations for fine and coarse resolutions.
This is evaluated in Section 5.6.2.

5.2 Dictionaries and Sparse Coding

A dictionary D ∈ Rn×m, m < N is a matrix, which columns are modified patch signals.
The patch signals in a dictionary are called atoms. These can be used as linear combination
to represent an arbitrary patch signal p from the image: p = Dλ.
For SPSTFM overcomplete dictionaries are used, i. e.m > n. This allows to have a sparse

representation λ ∈ Rm, such that only a few atoms are used to represent p.
However, this requires a sparse coding algorithm to find λ. The approach from [NW+07]

that is used here is just briefly summarized. Actually the problem can be stated as

λ = arg min
λ′

‖λ′‖0 s. t p = Dλ′,

where ‖ · ‖0 denotes the number of nonzero elements. To allow for a small error this can be
reformulated in a relaxed form:

λ = arg min
λ′

‖λ′‖0 s. t ‖p−Dλ′‖22 < ε,

where ε is a tolerance. Now, the term ‖λ′‖0 makes it a hard problem, but it can be approx-
imated under certain conditions [RBE10], by an L1-norm. There are different algorithms
that are based on this formulation. [HS12] suggests to use a Gradient Projection for Sparse
Representation (GPSR) algorithm [NW+07]. There, the problem is reformulated to an
unconstrained optimization problem:

min
λ

1
2‖p−Dλ‖22 + τ‖λ‖1, (5.2)
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where τ balances the sparsity of the solution. A larger τ means a sparser solution at the
cost of accuracy. [NW+07] suggests to choose τ = 0.1‖D> p‖∞. Equation (5.2) is equivalent
to a standard quadratic problem

min
λ
F (λ), where F (λ) := 1

2λ
>D>Dλ+ (τ11×m − p>D)λ.

This can also be reformulated to become a bound-constrained quadratic program (BCQP),
see [NW+07]. The GPSR algorithm is based on this formulation. In this work the GPSR-
BB variant with monotonic behaviour is chosen. The main loop of the GPSR-BB algorithm
stops when relative change in the objective function is small enough, i. e.

F (λk)− F (λk−1)
F (λk−1) < ε, (5.3)

where ε = 10−6 is chosen as default option and 5 < k < 5000 is the iteration count. In
the reference implementation of GPSR mentioned in [NW+07] this is stop criterion 1. It
is also worth to mention that using a smaller ε results in more iterations and this gives
usually a sparser representation. After that λ debiased (‖λ‖1 introduces a bias), but only if
the number of non-zero elements is not more than the dimension. Debiasing is an iterative
optimization with the Conjugate Gradient (CG) method that starts at λk and optimizes
for (5.2) with τ = 0. However, the CG method is modified such that it does not add any
non-zero elements to λ, so the sparsity is not changed. For debiasing in this work at least
one iteration is done, but a very loose debiasing tolerance of 10−1 or 10−2 is used as default
option. To sum it up, with this algorithm a good sparse representation λ respective to an
appropriate dictionary D can be found for any patch signal p.

5.3 Dictionary-Pair Training

Since in the image structure in Table 5.1 there are fine and coarse resolutions, also two corre-
sponding dictionaries Df and Dc are required. These are initialized with the firstm columns
of the training data Pf,31 and Pc,31, respectively. Then, optionally, each patch, independent
of resolution, can be normalized to the Euclidean length of 1, i. e. ‖pf,i‖2 = ‖pc,i‖2 = 1 ∀i,
where pf,i and pc,i are the i-th coarse and fine patch signal, respectively. However, this does
not allow for different scales of coarse and fine resolution atoms. Alternatively, all patches
can be scaled with the same factor. This includes the special case of the factor being 1 in
which case the patch signal is taken from the difference image unchanged. Another way
of normalization is that all patch signal pairs can be scaled with a different factor, such
that one of the two patches is normalized and the other divided by the same factor, i. e.
s := max(‖pf,i‖, ‖pc,i‖) and then pf,i ← pf,i

1
s and pc,i ← pc,i

1
s . This results in a norm less

or equal to 1. The two latter methods are rather similar since they do not change the ratio
between the norms of fine and coarse resolution patches in each pair, but only between
different pairs.
Now the dictionaries have to be trained. Although the dictionaries might fit to the first

training patch signals optimally (depending on normalization), since they were initialized
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with them, the goal is rather to have a dictionary-pair that is optimized for the whole
training data:

{D∗f , D∗c ,Λ∗} = arg min
Df ,Dc,Λ

{
‖Pf,31 −Df Λ‖2F + ‖Pc,31 −Dc Λ‖2F + τ ‖Λ‖1

}
(5.4)

Hereby, the columns λi of Λ are sparse representation coefficients. In [HS12] they are
determined by both resolutions. Such a representation λi can be found by using a stacked
patch signal [pf,i; pc,i] and a stacked dictionary [Df ;Dc] in the GPSR algorithm to find the
best common representation for (

pf,i
pc,i

)
≈
(
Df
Dc

)
λi.

In addition, alternative optimization objectives for λi are provided in this implementation:

• Using the coarse resolution only: pc,i ≈ Dc λi

• Using the fine resolution only: pf,i ≈ Df λi

• Averaging the coefficients of both resolutions: pf,i ≈ Df λf,i, pc,i ≈ Dc λc,i and λi :=
1
2(λf,i + λc,i).

All of these options basically optimize λi for (5.2), but with different P and D. Doing this
for every i yields Λ. Note, there is only one Λ instead of one per resolution. The algorithm
is not stated here. The reader is referred to [NW+07] and the reference implementation
mentioned there with an URL. Finding Λ by using the GPSR algorithm in this way for
each column is the first step of the iterative training process to solve (5.4).
The second step is to update the dictionary columns in a pairwise manner. For that K-

SVD [AEB06] is adapted. Let P ∈ Rn×N be the training data,D ∈ Rn×m the dictionary and
Λ ∈ Rm×N the sparse representation coefficients. Then, when updating the k-th atom of D,
the nonzero entries in the k-th row of Λ are considered. These belong to the representations
that use the k-th atom. Let ωk be the set of their indices, i. e. ωk := {i | Λk,i 6= 0, 1 ≤ i ≤ N}.
Now, let Pωk

be the reduced training data, which includes only the columns of P with the
indices in ωk, analogously Λωk

the reduced coefficients and Ik the m ×m identity matrix,
but with a zero in the k-th diagonal entry. Then the error matrix

Ek = Pωk
−D Ik Λωk

represents the remaining error without the k-th atom, since Ik sets the coefficients for the
k-th atom to zero. Now one applies a Singular Value Decomposition (SVD)

Ek = U ∆V >,

which gives orthogonal U and V and diagonal ∆, to receive the best rank 1 approximation.
This is Ek ≈ u1 ∆11 v

>
1 , where u1 is the first column of U , ∆11 is the first (and thus largest)

singular value and v1 is the first column of V . To apply this approximation, the k-th column
of D will be set to u1 and the k-th row of Λωk

(i. e. the nonzero entries in the k-th row of
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Algorithm 1 Atom update (concatenated version)
Input concatenated difference patch matrix P31 as P , concatenated dictionary D, sparse

coefficients Λ, index k
Output updated concatenated dictionary column dk, updated coefficient row λk
function K-SVD(P , D, Λ, k)

λk ← row k of Λ
ωk ← indices of nonzero entries in λk
Pωk
← columns of P with indices ωk

Λωk
← columns of Λ with indices ωk

Ik ← m×m identity matrix, but with k-th diagonal entry 0
Ek ← Pωk

−D Ik Λωk

[U,∆, V >]← SVD(Ek)
if option is scale coefficients or option is scale dictionary normal then

return dk ← u1 and λk(ωk)← v1 ∆1,1 . λk(ωk) selects the elements at ωk
else if option is scale dictionary direct then

return dk ← u1 ∆1,1 and λk(ωk)← v1
end if

end function

Λ) will be set to v1 multiplied by ∆11. Alternatively the k-th dictionary column can receive
the multiplication with ∆11 instead of the coefficients. An option is provided for that.
Now this column update can be done in several ways. The easiest is to use concatenated

training data and dictionaries, i. e.

P :=
(
Pf,31
Pc,31

)
and D :=

(
Df
Dc

)

This is one option and shown in Algorithm 1. For the difference between scale dictionary
normal and scale dictionary direct, see Algorithm 2 and its description, where all options
yield a different output. However, [HS12] mentions that this Concatenated option is not
appropriate for typical satellite images, which can have large differences in “amplitude and
variance”.
The concatenated option handles the dictionaries as one unit. The other options do

separate SVDs for fine and coarse resolutions. Since the SVD is not unique it must be
taken care of the signs of the updated column and row. Neglecting that could result in
an inversion of atoms, which would break the mapping between them for any following
updates. Also, the update of the coefficients cannot be done twice. It is very important
that each column update in both dictionaries is done with the same coefficients. Otherwise
they would loose their implicit mapping over time. This would also happen if the coefficients
were not updated, which is available as an option (disable online learning), but not further
mentioned. Nevertheless, there are now two options. Either the coefficients of a single
resolution can be used for the coefficient update or the average of both.

Let us now discuss these steps from the beginning in more detail. First denote the error
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matrices for both resolution by

Ef,k = Pf,ωk
−Df Ik Λωk

and Ec,k = Pc,ωk
−Dc Ik Λωk

,

where Pf,ωk
is the reduced matrix of Pf and Pc,ωk

is the reduced matrix of Pc. Then let

Ef,k = Uf ∆f V
>

f and Ec,k = Uc ∆c V
>

c .

Now set v := vf,1 · vc,1, where vf,1, vc,1 are the respective first columns. This scalar product
of the normalized new coefficients is utilized to recognize a different sign between the first
columns of the two SVDs. v should be optimally (if Ef,k = Ec,k) 1 or −1 and in case of a
−1, the sign will be changed. Due to the different resolutions and other reasons the errors
will be different and thus the sign is changed if v < 0, i. e. multiplying by sign(v) (assuming
v 6= 0 in which case the sign would not be changed). So, to update the dictionary atom the
k-th column of Dc is set to uc,1 and the k-th column of Df to sign(v)uf,1, where uc,1 and
uf,1 are the respective first column of Uc and Uf . For the update of the coefficients one of
the following options can be used:

• The average of both new coefficients is used as update coefficient. Then the k-th row
of Λωk

will be set to vc,1 ∆c,11 + sign(v) vf,1 ∆f,11
2 .

• Or the coefficients of the coarse resolution only is used. Then the k-th row of Λωk
will

be set to vc,1 ∆c,11.

• Or, finally, the coefficients of the fine resolution is used. Then the k-th row of Λωk

will be set to sign(v) vf,1 ∆f,11.

Again, as an alternative, the singular values can go into the dictionary instead into the
coefficients. This is again provided as an option. However, in this split-up K-SVD variant
this makes a real difference apart from just scaling. Using uc,1 ∆c,11 for the k-th column of
Dc and sign(v)uf,1 ∆f,11 for the k-th column of Df enables different scales for the different
resolutions. Since there is only one coefficient vector, which both resolutions share in the
dictionaries, the coefficients cannot be used to match different scales of the resolutions.
Scaling the atoms to the appropriate singular value could be valuable for images with a
very different deviation of values of fine and coarse resolution. The coefficients can then
have the norm 1. For their update all is done in the same way, except they are not multiplied
with the singular values anymore. This is referred to as scale dictionary direct. As a variant
the atoms can be divided by the larger singular value and the coefficients multiplied with
it. So with s := max(∆c,11,∆f,11) the k-th column of Dc receives uc,1 ∆c,11

1
s and the k-th

column of Df receives sign(v)uf,1 ∆f,11
1
s , while the singular values in the coefficient update

are replaced by s. The effects of these options are shown in Section 5.6.2. This modified
K-SVD algorithm with all the described options is stated in Algorithm 2

In [HS12] it seems like for finding the coefficients Λ the concatenated matrices are used
and for the column updates of Df and Dc the averaging procedure, but this is not clearly
described. Although the options for coefficients and column updates seem to be indepen-
dent it does not make sense to mix them arbitrarily: Concatenated and averaged can be
mixed, but aside from that the same option should be used for coefficients and column
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Algorithm 2 Atom update (separate resolutions)
Input concatenated difference patch matrix P31 as P , concatenated dictionary D, sparse

coefficients Λ, index k
Output updated concatenated dictionary column dk, updated coefficient row λk
function K-SVD(P , D, Λ, k)

λk ← row k of Λ
ωk ← indices of nonzero entries in λk
Pωk
← columns of P with indices ωk

Λωk
← columns of Λ with indices ωk

Ik ← m×m identity matrix, but with k-th diagonal entry 0
Ek ← Pωk

−D Ik Λωk(
Ef,k
Ec,k

)
= Ek . Split up into fine and coarse resolutions

[Uf ,∆f , V
>

f ]← SVD(Ef,k)
[Uc,∆c, V

>
c ]← SVD(Ec,k)

v ← vf,1 · vc,1 . vf,1 and vc,1 are the first columns of Vf and Vc, respectively
if option is scale coefficients then

dk ←
(

sign(v)uf,1
uc,1

)
else if option is scale dictionary normal then

dk ←
(

sign(v)uf,1 ∆f,11
uc,1 ∆c,11

)
1

max(∆f,11,∆c,11)
∆f,11,∆c,11 ← max(∆f,11,∆c,11)

else if option is scale dictionary direct then

dk ←
(

sign(v)uf,1 ∆f,11
uc,1 ∆c,11

)
∆f,11,∆c,11 ← 1

end if
if option is average then . λk(ωk) selects the elements at indices ωk

λk(ωk)← 1
2(sign(v) vf,1 ∆f,11 + vc,1 ∆c,11)

else if option is fine then
λk(ωk)← sign(v) vf,1 ∆f,11

else if option is coarse then
λk(ωk)← vc,1 ∆c,11

end if
return dk and λk

end function
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Algorithm 3 Dictionary Training
Input concatenated difference patch matrix P31 as P
Output concatenated trained dictionary D
function Train(P )

initialize D by first columns of P and normalize
repeat

for all patch signals pi from P do . Find sparse coefficients Λ
λi = GPSR(pi, D) and put λi in i-th column of Λ

end for
for all atoms dk in D and corresponding coefficient row λk do . Update D and Λ

[dk, λk] = K-SVD(P,D,Λ, k)
end for

until stopping condition satisfied . see Section 5.5
return D

end function

update. As will be seen in the next section, using the coarse resolution seems to be es-
pecially sound, since then the dictionaries are optimized for their actual use case, since in
reconstruction only coarse patches are available. The influence of the different options is
tested in Section 5.6.

Also the normalization of the initial dictionary depends on the singular value scaling
option for the dictionary update. Using the singular values to scale the coefficients induces
that all atoms have the same length. To be consistent, the dictionary should also be
initialized in this way and this is done by normalization of every coarse and fine resolution
patch signal independently. On the other hand, when using the fine and coarse resolution
singular values to scale the fine and coarse resolution atoms separately, they have different
length with the ratio of the singular values. Therefore the dictionary should be initialized
with natural ratios between fine and coarse resolution patches. This is done by either using
the singular values directly to scale the atoms, in which case the initial dictionary should
not be normalized at all (factor 1), or by additionally dividing the atoms and multiplying
the coefficients by the larger singular value, in which case the initial dictionary should be
normed in a pairwise manner. Then the initial dictionary is consistent with the trained
one, which makes sense.
To optimize (5.4) these two steps – finding sparse coefficients and updating the columns

in the dictionaries – are repeated until the dictionary is trained. The condition, when
to stop is discussed in Section 5.5, since for one option reconstruction is used, which is
discussed in the next section. The training is summarized in Algorithm 3. There only the
concatenated patch matrix and dictionary are used. However, from these the fine or coarse
resolution parts can be extracted easily, which is not explicitly shown for GPSR. However,
the algorithm does not change; the desired resolution parts have just to be used in calling
arguments (and for the average option both resolutions separately and the results averaged).
For K-SVD there are two versions, Algorithm 1 (concatenated option) and 2 (other options),
from which the correct one should be selected. In Algorithm 2 the remaining options are
stated explicitly.
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5.4 Reconstruction

In the reconstruction stage the trained dictionary-pair is used to predict a fine resolution
image from a coarse resolution image, compare date 2 in Table 5.1. However, the dictionaries
are trained for difference image patches. Hence, the coarse resolution image of date 2 is
not used directly, but as part of a difference image patch matrix. There are two choices:
P̃c,21 or P̃c,23, which are patch matrices that include every patch from the difference image
Ic,21 and Ic,21, respectively. Since for the test data or patch matrices Pc,21 and Pc,23 a
normalization (5.1) has been done, this has also to be done for the patches in P̃c,21 and
P̃c,23. The normalization must be done with the same values as done for the test data.
Before elaborating the best choice for P̃c,21 and P̃c,23, for the sake of simplicity, the general

process is discussed. Let P̃c be a coarse resolution difference image patch matrix. The goal
is to predict the unknown fine resolution image If . This is done patch-by-patch. Let pc
be a coarse resolution patch from P̃c and pf the corresponding (unknown) fine resolution
patch. Then the GPSR algorithm with Dc and pc yields a sparse representation λ, which
corresponds to the problem

λ = min
λ∗

1
2‖pc −Dc λ

∗‖22 + τ‖λ∗‖1. (5.5)

This sparse representation is now used with the fine resolution dictionary to predict pf :

pf = Df λ (5.6)

Inversion of the normalization can be done like shown in the following.

p̃f = pf bf + af

This procedure can be done for every patch in P̃c and give a corresponding fine resolution
patch. However, these do not match exactly in the overlapping regions. This will be handled
later on after the different resolutions have been combined.
SPSTFM claims [HS12] to be able to cope well with structural changes, like large build-up

areas, even when using dates with long gaps in between. Their paper uses an example with
two years between the images. This ability to handle structural changes is largely based
upon weighting both resolution’s patches P̃c,21 and P̃f,23 patch-by-patch according to the
structural change in that patch. Let pf,21 be a patch reconstructed using the corresponding
patch pc,21 with (5.5) and (5.6) and pf,23 reconstructed from pc,23. Then they are combined
in the following way:

pf,2 = w1 (pf,1 + pf,21) + w3 (pf,3 + pf,23), (5.7)

where pf,1 and pf,3 are the corresponding patches from the images If,1 and If,3. The weights
w1 and w3 are determined with help of an improved build-up index [HSXZ10]. The contin-
uous build-up index is as follows:

BUc = SWIR−NIR
SWIR + NIR −

NIR− Red
NIR + Red , (5.8)
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where SWIR is a shortwave infrared band, NIR near infrared and Red just the visible red
band. In this work that value will not be calibrated with sample images (can be done
optional), but instead only checked whether it is greater zero, in which case it is considered
as build-up pixel and otherwise not. Let the number of build-up pixels that changed from
pc,1 to pc,2 divided by the number of pixels n be v1 and from pc,2 to pc,3 be v3 (average
number of build-up pixel changes per pixel). Then the weights are calculated as

wi =



1
2 if vi = vj = 0
1, if vj − vi > δ ∨ (vi = 0 ∧ vj 6= 0)
0, if vi − vj > δ ∨ (vj = 0 ∧ vi 6= 0)

v1 v3
vi v1 + vi v3

, otherwise

for i = 1, j = 3 or i = 3, j = 1.

(5.9)
Hereby the weighting difference limit δ limits the difference of the weights and switches
completely to one patch, when δ is exceeded. In [HS12] and in the implementation by
default δ = 0.2.

As an alternative option, and for cases where the required bands are not available, e. g.
single-channel images, a simplified weighting based on the normed average absolute differ-
ence per patch is developed. There vi =

∑
|pc,2i|
nM is directly used, where M the maximum

value in P̃c,21 and P̃c,23. The calculation of wi stays the same.
Now, since every patch for the image If,2 is available, these are averaged in the overlapping

regions to build that image. This is basically all for the reconstruction and summarized in
Algorithm 4.

5.5 Stopping condition
Now, to the question about when the training should stop. This implementation provides
several options for that. Firstly, it can be selected, which value should be considered. [HS12]
suggests to use the objective function ‖P −DΛ‖2F + τ‖Λ‖1 with concatenated training data
and dictionary. However, τ can be different for every column and thus the τ in the shown
objective function could be interpreted as the largest τ . Another interpretation is also
possible, where each column λi of Λ is multiplied with the corresponding τi and norm by
the number of elements, so formally

E = (‖P −DΛ‖2F + max(τi)‖Λ‖1) · 1
N n

(5.10)

or

E = (‖P −DΛ‖2F + ‖Λ diag((τi))‖1) · 1
N n

. (5.11)

P and D can be the concatenated versions, coarse or fine. A forth option for averaging
coarse and fine is also available to be consistent with similar options for the dictionary
training.

A third, completely different measure is the reconstruction error for a test set. For
that we use K randomly selected patches from P̃f,31 and P̃c,31 as test data Qf and Qc,
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Algorithm 4 Reconstruction
Input trained dictionaries Df , Dc, images If,1, If,3, Ic,1, Ic,2, Ic,3
Output predicted image If,2
function Reconstruct(Df , Dc, If,1, If,3, Ic,1, Ic,2, Ic,3)

P̃f,21 ← Predict(Ic,2 − Ic,1, Df , Dc)
P̃f,23 ← Predict(Ic,2 − Ic,3, Df , Dc)
P̃f,1 ← convert If,1 to n×K patch matrix
P̃f,3 ← convert If,3 to n×K patch matrix
for i← 1, . . . ,K do

w1, w3 ← weights for patch i . see Section 5.4
pf,2 ← w1 (pf,1 + pf,21) + w3 (pf,3 + pf,23)

end for
P̃f,2 ← made with column vectors
return If,2 ← use patches from P̃f,2, average overlapping areas pf,2

end function

Input coarse resolution difference image Ic,2X , trained dictionaries Df , Dc
Output predicted difference patch matrix P̃f,2X
function Predict(Ic,2X , Df , Dc)

P̃c,2X ← convert Ic,2X to n×K patch matrix . K is the total number of patches
for i← 1, . . . ,K do

λi = GPSR(pc,i, Dc) . pc,i is column i of P̃c,2X
pf,i ← Df λi and put pf,i in the i-th column of P̃f,2X

end for
return P̃f,2X ← made with column vectors pf,i

end function
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respectively, which are patch matrices. Then in each iteration a reconstruction can be done
for each column with (5.5) and (5.6). Let the reconstructed patches be Q̂f . Then the error
is computed as

E = ‖Qf − Q̂f‖1 ·
1
K n

. (5.12)

Now there is a value that can be used as stopping criterion. [HS12] sets the acceptable
“error of the objective function between two consecutive iterations” to ε = 0.3.

• This could be the absolute difference of |Ej−1 − Ej | < ε.

• Alternatively the signed difference Ej−1 − Ej < ε can be checked,

• relative variants |E
j−1 − Ej |
|Ej−1|

< ε or

• Ej−1 − Ej

Ej−1 < ε or also

• the value itself Ej < ε.

The default stopping condition uses (5.11) and stops at Ej−1 − Ej < 10−10. The signed
difference has the property that the training stops when the objective function value be-
comes worse, because then Ej−1 − Ej < 0 ⇔ Ej > Ej−1. But it also stops when the
objective function value improves less than 10−10, which can be considered as converged.

Apart from the above described stopping conditions, it is also possible to set a minimum
and a maximum number of iterations. When setting both to the same value, the number
of iterations is fixed.

Stopping the training does not necessarily mean that the dictionary from the last iteration
is used. There is an option, called Best Shot Dictionary, that uses the dictionary from the
iteration where the test set error was the lowest.

5.6 Experiments
This section describes results from different experiments with three different sets of images.
First the test image sets are introduced. Then a very extensive test section follows, which
compares different configuration options to see, what influence they have and also to op-
timize the default options. Finally, a comparison is drawn between fused products from
SPSTFM and from STARFM/ESTARFM.

The artificial image set is similar to the one described in [HS12]. So the image background
is white, a circular structure changes its size, a non-square rectangular structure changes its
value and a squared structure changes its size and value. The clear, homogeneous structures
make it easy to spot artefacts and the behaviour on size or value changing objects. The
images are shown in Figure 5.2 in original size and lossless, so they can be extracted from the
digital version. However, they are also available together with the code as test images. To
compare it with real dimensions, a fine resolution of 30 m per pixel and a coarse resolution
of 250 m per pixel is assumed. The stated pixel dimensions refer to the fine resolution.
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(a) Fine res., date 1. (b) Fine res., date 2. (c) Fine res., date 3.

(d) Coarse res., date 1. (e) Coarse res., date 2. (f) Coarse res., date 3.

Figure 5.2: Artificial images. Coarse resolution images use bilinear interpolation and have
an signal-to-noise-ratio of 35 dB.

The artificial images have a width and height of 335 pixels and use 8-bit unsigned type
(0 represents black, 255 represents white). The coarse resolution image is made from the
fine resolution image by downscaling by 25

3 , then adding noise with a signal to noise ratio
of 35 dB, and finally scaling back. Scaling is done with with bilinear interpolation (and
anti-aliasing for the downscaling). The circle has its centre located at pixel coordinates
(75.5, 75.5) and a fixed value of 60. Its radius changes from 60 pixels (1800 m) to 33 pixels
(990 m) to 17 pixels (510 m). The non-square rectangle has its centre located at pixel
position (250, 50) and a fixed size of 85× 39. Its values change from 20 to 150 to 220. The
square has its centre located at (225, 225). Its size changes from 33 pixels (990 m) to 67
pixels (2010 m) to 133 pixels (3990 m). Its value changes from 220 to 130 to 40.

The single-channel images are real near-infrared (NIR) 16-bit unsigned integer images
taken from MODIS and LANDSAT satellites. The dates are the days 158, 238 and 254
in 2016. Their centre coordinates are 12◦ 28’ 6.35" E, 54◦ 16’ 7.96"N and they have a size
of 300 × 300. These are shown (as small size previews) in Figure 5.3. Note the rather
larger time gap between the first two dates (80 days) and the small gap between the second
two dates (16 days). One can see a huge difference in brightness, which is shown in the
histogram in Figure 5.4. There one can notice that the brightness is not only shifted, but
also the range of the values (contrast) is different. These are problems that arise in real
images due to different recording properties across different satellites. These images are not
always used in full size, but cropped to 708 × 708 with a 4 pixel border on each side for
the prediction area (see Section 4.1.3). This results in a 700 × 700 image. This is located
at (700, 700). The cropped image covers then a bit water in its top left corner, but mostly
land.
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(a) Fine, date 158. (b) Fine, date 238. (c) Fine, date 254.

(d) Coarse, date 158. (e) Coarse, date 238. (f) Coarse, date 254.

Figure 5.3: Real single-channel images. Coarse resolution im-
ages use bilinear interpolation. There is a huge dif-
ference in brightness between fine and coarse resolu-
tion images.

0 1 2 3
·104

Coarse
Fine

Fig. 5.4: Histogram of fine
(red) and coarse
(blue) images of
date 158.

The multi-channel images are real 16-bit unsigned integer images taken from MODIS and
LANDSAT satellites. They have four channels: Red, Shortwave-Infrared (SWIR), Near-
Infrared (NIR) and Green. This should allow to use the improved build-up index, see (5.8)
for weighting. Their centre coordinates are 6◦ 57’ 37.08" E, 51◦ 19’ 31.38"N and they have a
size of 444× 444. The dates are the days 220, 236 and 243 in 2016. There is no preview for
the images.

The image error is measured as the mean absolute difference (MAD) between the result
image Ĩf,2 (also called fused product) and the reference image If,2. This is very similar to
(5.12), but using the images instead of the patch matrices:

MD := 1
w h
‖Ĩf,2 − If,2‖1, (5.13)

where w and h are width and height of the images, respectively. A lower error means higher
quality. However, for low depth images (8-bit) the MAD is lower than for the same images
represented in a higher depth.

5.6.1 Configuration tests
From first experiences with SPSTFM a default configuration is chosen. This is not optimal
yet, but used for the configuration tests. To make it complete here the configuration test
default options are listed:

• dictionary initialization: normalize each patch in each resolution separately
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• dictionary size: 256

• number training samples: 2000

• patch size: 7

• patch overlap: 2

• minimum number of training iterations: 0 (however, one iteration is always done to
check convergence, except the maximum number of training iterations is also 0)

• maximum number of training iterations: 20 (arbitrarily chosen)

• subtract mean value: no

• divide by: coarse resolution image variance

• sampling strategy: most variance

• weight difference limit δ = 0.2

• use build-up index for weights: no (since the images must have the required bands
and this might not be the default case)

• band indices of red, NIR, SWIR for build-up index: 0, 1, 2 (only used if build-up
index is used)

• threshold of build-up index: 0 (only used if build-up index is used)

• all resolution options in training (GPSR, K-SVD, objective function): coarse

• K-SVD singular values weight: coefficients

• stopping condition function: objective (5.11) (using coarse resolution)

• stopping condition: signed difference, with value 10−10, i. e. Ej−1 − Ej < 10−10

• test set size: 4000 (only used if test set error is used as stopping condition function)

• GPSR options:

– main algorithm tolerance: 10−7 (for training and reconstruction)

– debiasing tolerance: 10−1 for training and 10−2 for reconstruction

– number of iterations k for the main algorithm: 5 ≤ k ≤ 5000

– number of iterations k for the debiasing: 1 ≤ k ≤ 200

– sparsity balancing factor τ : automatic (τ = 0.1 ‖D> p‖∞)

– use continuation: yes (speeds up GPSR algorithm)
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Table 5.2: Average time for training and reconstruction. Average taken over 75 iterations.
Concatenated Coarse Averaged Fine Concat. /Avg.

Computation time 152 s 428 s 622 s 728 s 506 s

In the following tests we deviate with some options from the above defaults to see their
influence and try to improve the default options. The changed options are stated there.

The first test tries to answer the question from Section 5.3 which resolution should be
selected to find the sparse representation coefficients. These are then used to initialize the
K-SVD algorithm, which updates the dictionary and again the coefficients. The following
five combinations are tested here:

• Concatenated – use the concatenated dictionary and patch matrix to find the co-
efficients and also update the dictionary in a concatenated fashion directly. [HS12]
states that [YWHM10] uses this, but for satellite images it were not appropriate. This
approach can be found in Algorithm 1.

• Coarse – use the coarse resolution only to find the sparse representation coefficients
and in K-SVD only the updated coefficients stem from the coarse resolution SVD.
This and the remaining options below use Algorithm 2.

• Fine – the same as Coarse, but with the fine resolution.

• Averaged – both resolutions are used and then the average of the coefficients is used.

• Concatenated /Averaged – for the GPSR algorithm, which finds the sparse represen-
tation coefficients, the concatenated dictionaries and patch matrices are used. For the
coefficient update in K-SVD the new coefficients of both resolutions are averaged.

These combinations are used for fusing the shapes image set with 75 iterations. After each
training iteration a reconstruction is done to measure the error. Also the test set error is
recorded to see whether real error and test set error correlate. The plot with the errors
is shown in Figure 5.5. One can recognize a good match of the error shapes, especially
for Concatenated and Averaged options. The errors of Averaged and Fine are very noisy.
The highest average error is the one of the Concatenated option, which never goes below
the untrained dictionary error. The lowest average and absolute error is the one with the
Coarse option, Concatenated /Averaged is the second best option. One can also recognize
that the interesting behaviour happens in about the first 15 iterations.

However, not only the errors depend on the resolution, but also the computation time.
The computation times for training and reconstruction is averaged over the 75 iteration for
each option. The result is shown in Table 5.2. The times for the resolutions are all different.
The Coarse option is the second shortest. The shortest is Concatenated, but this had the
largest error. The other options required more computation time and have also a larger
error than Coarse. So it is reasonable to keep Coarse as default option.

Let us consider the computation time in more detail and split it up into separate tasks.
So, generally, SPSTFM can be separated into training phase and reconstruction phase. The
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Figure 5.5: Errors of different training resolutions. Straight lines show the real error (MAD),
dashed lines the test set error. The grey lines show the error values of the
untrained dictionary.

first step in the training is to find the sparse representation coefficients using the GPSR
algorithm. These are then used in the K-SVD algorithm that updates the dictionaries and
coefficients. Optionally, there can be a test set to estimate the error. For that the GPSR
algorithm is used as well. After the training phase, the reconstruction is done. For that
the GPSR algorithm is used again. Since for reconstruction many patches have non-zero
weights, even two GPSR evaluations have two be done for these patches. Figure 5.6a shows
the ratio of times and Figure 5.6b shows the number of GPSR evaluations for the different
tasks. The options include the default 2000 training samples and use 4000 test samples. The
image consists of 4356 patches and in total there are 7568 non-zero weights. The time for the
K-SVD algorithm is negligible (0.67 s) and not shown. The computation time of the sparse
representation coefficients for training fits approximately to the ratio of total evaluations.
The computation time for the test set coefficients is longer than expected and the time for
the reconstructions is shorter than expected. For both tasks the same main GPSR tolerance
of 10−7 has been used. The GPSR algorithm requires with increasing training iterations less
time to find the coefficients, although it is always initialized with zero-coefficients. Finding
the reason for these behaviours is left for further work. Nevertheless, the GPSR algorithm
determines the runtime. So it would be worth to look for improvements to that algorithm
in general. However, there are also some options involved that determine the behaviour of
GPSR.
Hence, regarding the GPSR algorithm several combinations of different tolerance options

are tested. There is the main algorithm tolerance (5.3) and the debiasing tolerance. All 9
combinations of the following training tolerances values are tested:
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GPRS (training) GPRS (test) GPRS (reconstruction)

60 s211 s

155 s

(a) Average computation times.

2000
4000

7568

(b) Number GPSR evaluations.

Figure 5.6: Computation times and number of evaluations for one training iteration and
reconstruction. The times are averaged over 75 iterations.

• main algorithm tolerance in the dictionary training: 10−5, 10−6, 10−7

• debiasing tolerance in the dictionary training: 10−1, 10−2, 10−5

and then the 9 combinations of these reconstruction tolerances:

• main algorithm tolerance in the reconstruction stage: 10−5, 10−6, 10−7

• debiasing tolerance in the reconstruction stage: 10−1, 10−2, 10−5

The fusions are done with 15 iterations with the artificial image set Figure 5.2. The test
set has not been used here. Figure 5.7 shows the averaged training times against the image
error (MAD) for different main algorithm tolerances in the training phase. Varying this,
directly influences how precise – and thus also how long – the GPSR algorithm optimizes
the representation coefficients. One recognizes a strong influence on the runtime, but only
a rather slight influence on the average error. To make it more clear, 5 training iterations
with main algorithm tolerance 10−5 cost approximately as much as one iteration with main
algorithm tolerance 10−7. Still, training only with a tolerance of 10−5 will not approach
the error that a tolerance of 10−7 reaches.
However, there is also the debiasing tolerance in the training. It did not have a strong

effect on the computation time. Let us have a look on the image error. The image error
against the iteration for different debiasing tolerances is shown in Figure 5.8 for different
main algorithm tolerances. One can recognize that a lower debiasing tolerance is not always
beneficial. Only for a low main tolerance a low debiasing tolerance improves the accuracy
further in the later iterations. This behaviour might give rise to an adaptive method of
varying the GPSR tolerances in the training phase. So first a few iterations with a high
tolerance for main algorithm and debiasing could be done. Then a few iterations with a
medium tolerances and finally a few or one iteration with low tolerance could be done. This
might give a low error with less computation time required compared to directly using low
tolerances. This improvement is left for further work though.
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Figure 5.7: Average computation times (training only) and image errors (with standard de-
viations as error bars) for different main loop tolerances of the GPSR algorithm.
The debiasing tolerance is fixed to 10−2 since its influence on the computation
time was negligible. Averaging is done over 15 iterations. The main loop tol-
erance in the reconstruction stage is 10−7 and the debias tolerance 10−2. The
artificial image set has been used.
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Figure 5.8: Average image errors across iterations with different debias tolerances of the
GPSR algorithm in the training process. The main tolerance in the reconstruc-
tion stage is 10−7 and the debias tolerance 10−2. The artificial image set has
been used.
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Figure 5.9: Average computation times (reconstruction only) and image errors (with stan-
dard deviations as error bars) for different main loop tolerances of the GPSR
algorithm. The debiasing tolerance is fixed to 10−2 since its influence on the
computation time was negligible. Averaging is done over 15 iterations. The
main loop tolerance in the training stage is 10−7 and the debias tolerance 10−1.
The artificial image set has been used.

The training is a large portion in Figure 5.6a, but note, that the training phase is only
required once per time series. In a typical time series, like shown in Table 2.1, date 0 and
16 are used for training. These resolution pair dates are the same for the fusion of every
date in between. Therefore, once the dictionary is trained, it will be used to reconstruct
the images of dates 1 – 15. So this means the computation time for reconstruction has
also to be considered for different GPSR tolerances in the reconstruction phase. Figure 5.9
shows the averaged reconstruction time against the image error (MAD) for different main
algorithm tolerances in the reconstruction phase. Note, the tolerances in the training are
fixed to default, so these configurations use all the same dictionary. It is interesting that the
reconstruction time changes very much (more than ×3) from main tolerance 10−5 to 10−7,
while the error is nearly the same. The error even increases slightly from main tolerances
10−6 to 10−7. So it does not seem to be worth to use a low main tolerance in reconstruction.
However, using a main tolerance less than 10−5 increases the error. So a value near 10−5

appears to be the best choice here.
Now consider the debiasing tolerances in the reconstruction phase. Figure 5.10 shows

the errors against the iteration for different debiasing tolerances and for different main
tolerances. Here, a similar behaviour can be seen. A low debias tolerance is not beneficial
at all. In the case of a high main tolerance of 10−5 or 10−4 it even increases the error
considerably. Next, a deeper look into the reasons for this behaviour is taken.
To make the effect of a low debiasing tolerance in the reconstruction better visible, a

bad trained dictionary is used. Therefore the Concatenated option for dictionary and patch
matrix in the training are used and only one iteration is done. Then the effect is visible
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Figure 5.10: Average image errors across iterations with different debias tolerances of the
GPSR algorithm in the reconstruction process. The main tolerance in the
training stage is 10−7 and the debias tolerance 10−1. Therefore all dictionaries
at the same iterations are equal. The artificial image set has been used.

for the very noisy artificial image set (Figure 5.2). Figure 5.11 compares two images with
rather opposite configurations. Figure 5.11a uses a low tolerance (10−5) for debiasing in
reconstruction stage, while Figure 5.11b uses a high tolerance (10−1). One can see, that
the low tolerance gives a lot of artefacts in this situation. In combination with a high
tolerance (10−5) for the main algorithm in reconstruction stage this effect is even stronger.
This failure of handling noise is kind of expected and also mentioned in [NW+07] for strong
debiasing. The tolerances in the training do not influence this effect in a visible way.
When looking at Figure 5.11a one might notice the artefacts in the non-square rectangle.

These do not stem from the noise, but rather from a bad trained dictionary in general.
However, the question arises why there are so large differences in the quality across this
area. This is shown larger in Figure 5.12 with an even more extreme example. There
only the upper right non-square rectangle is shown. It should be homogeneous, compare
to the reference image in Figure 5.2b. In the bad result some patches are too bright
and too structured. And some patches seem to be predicted quite well although they are
neighbours. Also near the border many patches look quite well. Let us now consider the
two neighboured patches in the red marked area; one is bad, one is ok. However, if we
analyze why this result for these both patches is so different, it turns out that both are
actually badly reconstructed. The main difference is that the weights for the left patch
exceeds slightly the weighting difference limit δ, see (5.9) and the black area in the top
right of Figure 5.13. The left patch is therefore made by only one predicted patch. The
right patch is slightly below the weighting difference limit and in this case the weighted
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(a) Main alg. tol.: 10−5, debiasing tol.: 10−5. (b) Main alg. tol.: 10−7, debiasing tol.: 10−1.

Figure 5.11: Artefacts for different GPSR tolerances at reconstruction stage. Main tolerance
in the training is 10−7 and debiasing tolerance in the training is 10−1. The
dictionary is trained with one iteration.

Figure 5.12: Artefacts in the area of the
rectangle. Concatenated sam-
ples and dictionary are used in
the training. Only one itera-
tion is done.

Figure 5.13: Weights w1 for the artificial
image set, see also Figure 5.2.
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average of both predicted patches gives a rather good result although each of them for
itself is bad. When looking at the representation coefficients for these patches, the GPSR
algorithm finds a very low number of atoms (four in this example) to represent the low
resolution patches quite accurately, but the corresponding high resolution patches do not
fit at all. The test set error value (5.12) reflects this mismatch quite well in this case, as
is rises from untrained state to trained state by a factor of 2.8. This can also be seen in
Figure 5.5, where the Concatenated image error curve and its test set set error rises steeply
in the first 2 iterations. That the averaging lowers the error for appropriate weights also
explains why the test set error can be much higher than the actual image (note the two
different scales in Figure 5.5). So this analysis supports the reliability that the test set error
is a good indicator for the quality of the dictionary.

Considering the weights in Figure 5.13 they appear to have more variance in comparison
to [HS12]. In the background area, where nothing but noise changes, the weights seem
to be too noisy. Especially in the non-square rectangular region the weights should not
hit the weight difference limit δ. One could increase δ or choose a different weighting
method. [HS12] does not state how the weights in their artificial image set were calculated,
but it seems the method is different than the alternative option, described in Section 5.4.
Increasing δ would not help against the noisy behaviour, so generally using a different
weighting method could provide a better solution. Also, a low δ might be important in
cases where strong changes appear (structures, clouds, etc.) and these patches should be
not used at all.
Let us discuss the image error estimation further. So there is a rather reliable method,

which is very costly to evaluate – the test set error. The costly part is finding the sparse
representation coefficients for them. However, the objective functions has not yet been
considered. These are extremely cheap to evaluate. Furthermore there is one alternative,
which has not been mentioned yet. Using the training set error yields a similar method to
the test set error, but for free. When using the default resolution option Coarse, the sparse
representation coefficients for low resolution samples from the training set are required for
training anyway. However, these can be utilized to predict the fine resolution patches and
calculate the MAD analogue to (5.12) to estimate the dictionary quality. The performance
of this and the other options can be compared with Figure 5.14. Both objective functions
show very similar behaviour, but it is different to the actual error. Note, that in the
first iteration the objective functions values increase significantly, while the actual error
decreases. The test set error comes close to the shape of the actual error. Nevertheless, the
behaviour of test set error and actual error are expected to be different, since the actual
error is much lower because of the weighting, which often smoothes errors out, as described
above. Also some spikes may appear from single patches that are used often and that have
a large error, because the image has much repetitions. The training set error is very similar
to the test set error, but seems to be a bit smoother. However, it could replace the test set
error, which takes a large amount of time in the training, see Figure 5.6a.
There are still options, which have not been discussed yet, like whether or not to subtract

the mean value. The sampling strategy Random has also not been considered so far. So
Figure 5.15 shows the influence of these options and their test set error. It can be seen, that
subtracting the mean value increases the error for the artificial image set permanently. It
does not approach the level of the default configuration. Surprisingly the random sampled
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Figure 5.14: Stopping criterion functions behaviour compared with the actual image error.
The functions are scaled to fit in one plot; only the shape should be shown
here.
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Figure 5.15: Errors for different options. Image MAD are plotted as straight lines and test
set MAD as dashed lines.
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initialized dictionary gives the best result overall. The corresponding test set error is initially
also the lowest, but strangely decreases in the first iterations, while the actual error with the
random sampled training data increases. Since the actual image MAD is not available in
practice, this could not have detected. Also, after a few iterations the MAD is comparable to
the one of the default configuration. It might well be that the low initial error in the random
sampled configuration is a coincidence due to the white background. All values above 255
are limited to 255 and thus have no error at all. The test would be more meaningful with
a light grey background, but the white background is used to be comparable with [HS12].
Finally, before the comparison with STARFM and ESTARFM is made, some preparing

tests are performed. In Figure 5.4 can be seen one effect that appear in real images:
different data ranges across fine and coarse resolution. The mean value is not a problem
since only differences are used and therefore the different means cancels out (see Section 5.1).
However, the difference in standard deviations is still present in the difference image. There
are options to handle this and the next test compares these options.

• The default configuration has the same options as described in the beginning of this
section. Summarizing the relevant options, this configuration divides all difference
samples by the variance of the coarse resolution difference images, as suggested by
[HS12], but does not subtract any mean. The dictionary is normalized at initialization
in the way that every fine and every coarse patch has Euclidean length 1. For the
dictionary update with K-SVD in the training the singular values are used to scale
the coefficients. The following configurations list only the differences to the default
configuration.

• The div. sep. var. configuration divides the fine and coarse difference samples by the
variance of fine and coarse resolution difference images, respectively.

• The div. sep. std. dev. configuration divides the fine and coarse difference samples
by the standard deviation of fine and coarse resolution difference images, respectively.

• The scale dict. direct configuration uses for the initial dictionary the option to scale
all patches by the same factor and for the dictionary update via K-SVD the scale
dictionary direct option, which scales the dictionary with the singular values and in
addition divides by a fixed factor. In both cases the factor is chosen such that the
norm of the first fine atom is 1. These options fit together as explained in Section 5.3.

• The scale dict. normal configuration uses for the initial dictionary the option to scale
all patch pairs such that one of them is normalized and the other has a smaller norm.
For the dictionary update via K-SVD the scale dictionary normal option is used,
which scales the dictionary with the singular values, but divides each atom by the
larger singular value. See Section 5.3 for details and why these options fit together as
well.

• The div. / scale dict. direct configuration combines the scale dict. direct options with
the div. sep. std. dev. options.

• The div. / scale dict. normal configuration combines the scale dict. normal options
with the div. sep. std. dev. options.
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Figure 5.16: This plot shows the behaviour of different options to handle images that have
different standard deviation in fine and coarse resolution images. The solid
lines show the actual Image MAD and the dashed lines the training set error.

The test performs 15 iterations and shows also the training set error to estimate the dic-
tionary quality. Figure 5.16 shows all curves in one plot. The default configuration has got
a rather low image MAD, but this only due to the weighting. The dictionary has a bad
quality, which can be seen from the large test set error of around 75. The resulting image
shows strong artefacts, like Figure 5.12, which indicates a bad dictionary quality. The div.
sep. var. configuration shows the largest image and test set error. This means, dividing
by variance is not the right way to normalize an image. On the contrary div. sep. std.
dev. configuration shows the lowest image and test set error. Dividing by the separate
standard deviations is an elegant way of handling differences in the data ranges of fine and
coarse resolutions. It makes the data ranges of the training data equal. The dictionary is
then trained for this data. At reconstruction stage the coarse patches are normalized to
this very data range, coefficients found, the fine resolution patch predicted, which then is
denormalized to its natural data range. Thus the dictionary does not need to be able to
match different data ranges for fine and coarse resolution patches. The (div. / ) scale dict.
direct configurations perform equally, but slightly worth than the div. sep. std. dev. config-
uration. The scale dict. normal configuration has large deficits in the train set error, which
makes it unreliable. The div. / scale dict. normal configuration improves the behaviour but
does not outperform the other good configurations. So for real image sets like Figure 5.3 the
div. sep. std. dev. configuration seems to be the best one. A test with this configuration
on the original artificial image set gives a minimum image MAD of 3.1 and a test set error
of 17.4, while the default configuration gives an image MAD of 3.1 and a test set error of
18.5. Hence, it is reasonable to use the option to divide by separate standard deviation by
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Table 5.3: Errors for different methods with the artificial image set from Figure 5.2.
Method STARFM ESTARFM STARFM SPSTFM SPSTFM SPSTFM

Pair date 1 both 3 1 both 3

Image MAD 14.3 17.1 9.8 6 3.2 7.6

default.

5.6.2 Comparison with STARFM and ESTARFM

This section shows test results not only of SPSTFM products, but also of STARFM and
ESTARFM. STARFM actually requires just three images as input, while the other models
require five, see Tables 2.2a and 2.2b. To make the comparison between STARFM and
SPSTFM fair, STARFM is used with both possibilities; using dates 1 and 2 (denoted by from
left) and using dates 3 and 2 (denoted by from right) with the dates as given in Table 5.1.
To make it even fairer, SPSTFM is also used without weighting in the reconstruction stage
to get results from left and from right as well. This is equivalent to using w1 = 1, w3 = 0 and
w1 = 0, w3 = 1, respectively. The other images are still required for training. Nevertheless,
the STARFM settings are not optimized for this problem, because their optimization is out
of scope of this work. So STARFM might not give the best results that it could give.

The configuration used in this section is slightly different to the one used in the previous
section. Based on the configuration results of the GPSR tolerances, here a main algorithm
tolerance of 10−6 is used for training and 10−5 for reconstruction. The debias tolerance is
10−1 for training and reconstruction. Also, the test set is not used, since the reconstruction
is done for every iteration for testing purposes and – if needed – the training set error is
available anyway. From the last test in the previous section, see Figure 5.16 and its context,
it came out that in any case the fine and coarse training samples can be divided by the
standard deviations of the fine and coarse difference images, respectively. So this option is
used here as well. The prediction area is set to have a border of 5 pixels.
The first test uses again the artificial image set from Figure 5.2. The minimum errors

of the different models and input dates are shown in Table 5.3. The (best) result images
are shown in Figure 5.17. In the products from right there is a strong error in the border
in the bottom and right of the square shape. This might stem from a slight shift of the
coarse resolution image because of the reduced image size when downsampled. Apart from
that some more interesting observations can be drawn. STARFM could not deal with the
circle shape, which might be resolvable with different settings. In [HS12] the circle is much
better predicted and just has a very blurred edge. Also the result of ESTARFM does look
very strange. The black regions around the circle and the square look like an overflow.
When replacing these areas by white, the error is 10.3. For this an implementation in
IDL has been used, but the implementation in the image fusion framework yields similar
results. Especially the large blurs around the circle and the square seem to be specific
for ESTARFM. So ESTARFM as well as STARFM cannot handle structural changes well.
Also worth to mention is that STARFM (from right) and ESTARFM matched the non-
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(a) STARFM from left. (b) ESTARFM. (c) STARFM from right.

(d) SPSTFM from left. (e) SPSTFM with weights. (f) SPSTFM from right.

Figure 5.17: Products for artificial image set with different fusion models, input images and
settings. Compare with Figure 5.2b.

square rectangle area quite well. SPSTFM with weights gave the overall best results and
reproduce the size changing shapes quite well, but the non-square rectangle not as good
as ESTARFM. SPSTFM from left shows a border around the circle, which should not be
there. Similarly SPSTFM from right has a border around the square. These stem from
the difference image, which SPSTFM uses as actual inputs. There the borders are blurred
because of the coarse resolution. The predicted fine resolution patches apparently follow this
blurred behaviour and thus fails to add enough to reach white in these borders. However, by
using the weights these effects almost vanish. So indeed the weights are a strong component
that makes SPSTFM suitable for structural changes, but also without weights the results
are not too bad.
Before using real images, which includes several additional effect, the artificial set (Fig-

ure 5.2) is used again in its modified variant. For that the pixel values of the coarse resolution
images are divided by 5 to simulate a different standard deviation, similarly as in the single
channel set (Figure 5.3). Table 5.4 shows the minimum errors of the different models and
input dates. The (best) result images are shown in Figure 5.18. The first observation is
that STARFM completely fails at matching the pixel values (colour) of both rectangular
shapes. These heavily depend on the input image pair date. So, not even the fixed size
object is reconstructed in a reasonable way. The size changing shapes have wrong sizes
and are mostly solid filled. The error is huge in both STARFM products, as can be seen
from Table 5.4. The ESTARFM (imagefusion implementation) product matches all values
very accurately. However, at the non-square rectangle has got again a strange artefact,
which might vanish with the right settings. Fixing this manually lets the error decrease to
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Table 5.4: Errors for different methods with a modified artificial image set as described.
Method STARFM ESTARFM STARFM SPSTFM SPSTFM SPSTFM

Pair date 1 both 3 1 both 3

Image MAD 21.5 12.5 32.7 5.7 3.3 7.3

(a) STARFM from left. (b) ESTARFM. (c) STARFM from right.

(d) SPSTFM from left. (e) SPSTFM with weights. (f) SPSTFM from right.

Figure 5.18: Products for the modified artificial image set (dark coarse resolution images)
with different fusion models, input images and settings. Compare with Fig-
ure 5.2b.

53



Table 5.5: Errors for different methods with the semi-real set from Figure 5.3.
Method STARFM ESTARFM STARFM SPSTFM SPSTFM SPSTFM

Pair date 158 both 254 158 both 254

Image MAD 1446 1035 803 1257 637 629

10.5. This error is still rather large due to the failure in matching the sizes of the circle
and square. The SPSTFM product are very similar to the ones from Figure 5.17. The
products from left and from right are indeed slightly better, as they do not show a patch
pattern around the circle and the square. The errors in Table 5.4 confirm that. However,
the error for the weighted product has slightly increased, but in an insignificant order (0.1).
So SPSTFM can handle images with different standard deviations without preprocessing.
The next tests are performed with some of the real images from Figure 5.3. However,

before using the complete set, the effects of the coarse resolution images should be ignored.
They do not only differ in standard deviation (see Figure 5.4), but also suffer in quality. So
first only the fine resolution images are used with artificial coarse resolution images made
from the fine resolution images. The coarse resolution images have been downsampled (with
anti-aliasing) and upsampled again to reduce the resolution. Therefore the histograms of
the fine resolution images look the same as the ones of the corresponding coarse resolution
images. These images do not hold structural changes, although the time dates are spread
across 96 days. In practice structural changes are not very common. For easier comparison
of the fused products with the reference image, the lower right 100 × 100 region (of the
prediction area) is zoomed in Figure 5.19. The selected region shows different grey value
areas across the three images. Some areas turn a lot darker from date 158 to date 238,
which stay dark in date 254. Other areas turn dark from date 238 to date 254, while one
area shows the opposite behaviour. So this 100× 100 region is appropriate to take a close
look how the algorithms behave. From the artificial coarse resolution images it is obvious
how little one can recognize even from optimal images of that resolution. The real images
have even more issues by not being very precise in some areas.
The image MADs for the set with the artificial coarse resolution images are shown in

Table 5.5 and the lower right 100×100 region of the fused products is shown in Figure 5.20.
ESTARFM (imagefusion implementation) performs worse than STARFM from right. The
results of SPSTFM are better than the ones from STARFM and ESTARFM. For SPSTFM
and STARFM the error from right is about the half as the one from left. When using weights
for SPSTFM, the error even increases slightly. From looking at Figure 5.20f one can see
that borders and small areas that change are not matched accurately. Basically it seems
to increase and decrease the pixel values as the coarse resolution image suggests. However,
reconstruction of details from the coarse resolution seems to be not realistic with real images.
The training did not work well with these images as the lowest error with weights and from
right occurred with the initial dictionary before training. So the whole training procedure
has not been successful. Nevertheless, the errors are rather moderate. Note, that the images
have a depth of 16-bit and the data range, as can be seen from Figure 5.4, is effectively
15-bit. So an error of 642.5 here corresponds to an error of 642.5 · 28−1

215−1 = 5 in an 8-bit
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(a) Date 158, fine. (b) Date 238, fine. (c) Date 254, fine.

(d) Date 158, art. coarse. (e) Date 238, art. coarse. (f) Date 254, art. coarse.

(g) Date 158, coarse. (h) Date 238, coarse. (i) Date 254, coarse.

Figure 5.19: Lower right 100×100 region of Figure 5.3, where some areas change their grey
value (crop growth) differently. The fine resolution images are shown in the
top, the artificial coarse resolution images in the middle and the real coarse
resolution images in the bottom. The latter images are multiplied by the ratio
of the standard deviations between fine difference image and coarse difference
image, which is 4.7178, only to make the image content more visible. This
multiplication is not used for fusion.
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(a) STARFM from left. (b) ESTARFM. (c) STARFM from right.

(d) SPSTFM from left. (e) SPSTFM with weights. (f) SPSTFM from right.

Figure 5.20: Products for semi-real image set with different fusion models, input images
and settings.

Table 5.6: Errors for different methods with the real single-channel set from Figure 5.3.
Method STARFM ESTARFM STARFM SPSTFM SPSTFM SPSTFM

Pair date 158 both 254 158 both 254

Image MAD 4355 2707 1447 4068 3014 1629

image.
Next the test with the real coarse resolution follows. The images MADs are shown in

Table 5.6. The lower right 100 × 100 region of the corresponding fused products is shown
in Figure 5.21. The results are much worse in comparison to the semi-real image set. Here,
STARFM performs best, but with an error, which is as large as the maximum error with
the artificial coarse resolution image, see Table 5.5. Indeed SPSTFM with the div. sep.
std. dev. / scale dict. normal configuration from the end of the previous section performs a
bit better than the selected option. It yields an error of 1444 from right. Generally none of
the fused products seems to match the values on the changing areas. Maybe the quality of
the coarse resolution image is to bad in this image set.
It is also worth to mention that the computational costs for a fusion with STARFM are

very low. The fusion in this section could be finished in less than a second. ESTARFM
takes considerably more time for a fusion, but still not as much as SPSTFM.
Finally, the multi-channel image set is used. However, the weighting with the build-up

index does not work with the image as it is. This is because the bands red, SWIR and
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(a) STARFM from left. (b) ESTARFM. (c) STARFM from right.

(d) SPSTFM from left. (e) SPSTFM with weights. (f) SPSTFM from right.

Figure 5.21: Products for the real single-channel image set with different fusion models,
input images and settings.

NIR, that are involved in the build-up index (5.8), have different data ranges, which is not
documented in the satellite image product specification. This can not easily be fixed by
preprocessing (e. g. normalization), since this could also eliminate the desired properties.
Actually the data could be correct and there might just be no structure at all in the
dimension of the coarse resolution (250 m). The histograms of the important channels of
the MODIS image with date 220 are shown in Figure 5.22. There one can easily see, that
every NIR value is greater than any red value. Also the mean of SWIR is smaller than
the mean of NIR. This results in BUc < 0 for all pixels and all images. So there is no
build-up change and thus all weights are 0.5. These weights are still used, but denoted
by equal weights (eq. w.). The other weighting method chooses weights for each channel
separately, just like for single-channel images (s.-c. w.). The image MADs for each channel
are given in Table 5.7 For the errors with this test set holds that STARFM yields the
worst results, followed by SPSTFM with single-channel weights. ESTARFM (imagefusion
implementation) yields better results and SPSTFM with simple equal weights yields the best
results. Also both SPSTFM methods gave their best result with an untrained dictionary,
like with the single-channel real image set.
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Figure 5.22: Histogram for red (red), SWIR (blue) and NIR (orange) channels of the multi-
channel image set.

Table 5.7: Errors for different methods with the multi-channel real image set.
Method STARFM ESTARFM STARFM SPSTFM SPSTFM

Date /Weighting 220 both 243 (s.-c. w.) (eq. w.)

MAD channel 0 596 462 532 508 398
MAD channel 1 1019 907 1210 1024 744
MAD channel 2 1447 1215 1818 1406 955
MAD channel 3 509 374 555 426 277
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6 Conclusions and further work

During this work a software framework for image fusion algorithms has been successfully
developed. It consists of a library libimagefusion, currently three image fusion algorithms
and utilities. The library is designed by a few easy-to-use core classes and interfaces that
build the basis for image fusion algorithms. libimagefusionmakes also use of very common
third party libraries, like the multi-purpose boost library, the geo data library GDAL and
the image processing library OpenCV. With their support the code base could be kept
small but powerful. The core classes serve also as interface to these libraries and thus
allowed to overcome some design flaws and unify the programming interface. This could
help to make an Image object by far more const-correct than the underlying corresponding
object of OpenCV. The same class makes use of GDAL for input and output and hides its
complicated interface. The included algorithms – STARFM, ESTARFM and SPSTFM –
use all the same interface due to object orientation, which improves consistency and allows
to exchange them more easily. The framework also provides an option parser to support
speed up the development of utilities. This has been utilized for some utilities and yields
a powerful yet consistent command line interface. There are utilities to prepare images for
imagefusion, to fuse images with the included algorithms and to compare a fused product
with a reference image. The latter allows to measure the quality by several means, which
can be helping to improve an algorithm. All the utilities have proven their usefulness in the
development of SPSTFM.
SPSTFM is a rather complex image fusion algorithm, but could be successfully imple-

mented. The detailed discussion about the mathematical background serves as documen-
tation for the implementation. With lots of options that extend and improve the original
algorithm the implementation goes beyond the sole realization of the algorithm as program.
Several tests are invaluable to understand in which direction future improvement can go
and what has been tried so far. These tests also showed what to choose as default options,
gave justification for intuitively chosen options and also argued against to strict tolerances.
The test have been run mostly with the artificial image set from Figure 5.2. There

SPSTFM behaved well and outperformed STARFM and ESTARFM clearly. However this
image set mimics the one in [HS12] to get comparable results. But it seems this image set
is prepared as show case for SPSTFM, which can handle it very well and STARFM and
ESTARFM cannot handle the structural changes. For crop monitoring structural changes
are less important. Often only the value of an area changes homogeneously without changing
its size. For monitoring build-up areas, where structural changes are very common, image
fusion is not really important. The changes happen so slowly that the frequency of fine
resolution images should be enough for monitoring. In [HS12] one of the two real image
examples uses images with a time gap of two years. The paper focuses on these changes
and emphasizes this by choosing the build-up index for weighting. Certainly, this could be
replaced by another index to calculate the weights. Maybe SPSTFM could be more valuable
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for applications where structural changes happen rapidly, i. e. inbetween 16 days. These
kind of changes happen with catastrophes. So a water or burn index might be appropriate
depending on the application. However, for catastrophes a real-time prediction might be
valuable, too. With SPSTFM (and ESTARFM) image fusion is usually done for the past,
since five images are required. Tests could show if the dictionary can be trained with past
images and the weighting could also be used for extrapolation. Currently the sum of both
weights may not exceed 1. This is left for further work. Nevertheless, the quality of the
fused products of SPSTFM is not bad. For the multi-channel image set it performed even
best, see Table 5.7. However, for the real images the training did not decrease the error
significantly. This behaviour has to be researched to understand which properties of the
images are responsible for that and if SPSTFM can be modified such that the dictionaries
benefit from training for these kind of images.
Last but not least this is a software project and software can almost always be improved

by resolving errors, inconsistencies or adding new features. This framework is no exception.
There are many small points that would make the utilities or algorithms simply better. A
useful example for development would be logging capabilities. The most images in image
fusion are single-channel images or can be handled as such, but it would still be use full
if the image compare utility could work with multi-channel images. Similarly, but with
multiple images instead of channels: the image geo crop utility currently can only crop two
images at once. When having more than two images two crop the utility must be called
multiple times. It also cannot do a reprojection of geographical coordinate systems yet.
Especially for MODIS and Landsat images this would be useful, since they use different
coordinate systems. However, GDAL has a utility for that and the library supports this
functionality. So it might be possible to use similar code as the GDAL utility for that.
The GDAL utilities handle in general a lot of metadata, which would be very useful to
support better by the imagefusion framework. Then the image fusion algorithm utilities
could recognize more reliably no-data values and the valid data range, etc. Currently there
is no utility for SPSTFM available, but this can quickly change. The most work would be
to parse the options, which is already available. Nonetheless SPSTFM itself lacks a few
important features. The most important are support for masks (in case of no data value)
and padding. Mask support is in SPSTFM not as trivial as in STARFM or ESTARFM. If
for example a patch is taken for training or reconstruction, which contains some pixels that
do not represent data, these are often marked with data that is completely out of range (e. g.
−28672). Using them could make the GPSR algorithm to find an actually bad optimum.
So they have to be treated in some way. One way to deal with them could be to replace
them by a mean value of the patch. But this is left for further work. Padding is the second
important point, since currently it is not possible to fuse a whole image if the patches do
not coincidentally fit exactly. Hence a prediction area with a small border is mandatory.
This could be solved by padding when sampling out of the bounds of an image. So the
image could be mirrored at its border. This would lift the restriction of the prediction area
immediately. Furthermore small features like saving and loading dictionaries and weights
could be added. There is still room for improvements in the computation time, by using
an adaptive GPSR main loop tolerance, as discussed near Figure 5.7. What also could
improve training time, would be to initialize the GPSR algorithm with the coefficients from
the K-SVD algorithm. In the reconstruction stage for large images there occur often equal
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coarse resolution patches, which would actually have to be predicted only once, when they
were cached. Then, quite far away when the framework is stable regarding its interface,
algorithms and utilities, interfaces for other programming languages could be included. An
interface to C would be good, since many libraries are written in C. Python is nowadays
very popular for easy programming of computationally expensive operations. This can be
done when a natively (C, C++) compiled library is accessible from Python. libimagefusion
would be a good candidate for that. GDAL and OpenCV are also accessible from Python
and C, so maybe it would be possible with a relative low amount of work. However, this is
still complicated, since each language prefers its own style of interface and so these are not
able to be translated one-to-one. The interfaces have to be designed in such a way that it
feels natural to that language, which requires experience.
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